Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T12:45:25.087Z Has data issue: false hasContentIssue false

Schellackia landauae sp.nov. (Eimeriorina: Lankesterellidae) in the Brazilian lizard Polychrus marmoratus (Iguanidae): experimental transmission by Culex pipiens fatigans

Published online by Cambridge University Press:  06 April 2009

R. Lainson
Affiliation:
The Wellcome Parasitology Unit, Caixa Postal 3, Belem, Para State, Brazil
J. J. Shaw
Affiliation:
The Wellcome Parasitology Unit, Caixa Postal 3, Belem, Para State, Brazil
R. D. Ward
Affiliation:
The Wellcome Parasitology Unit, Caixa Postal 3, Belem, Para State, Brazil

Summary

A new haemogregarine, Schellackia landauae sp.nov., is described in the Brazilian lizard Polychrus marmoratus (Linn) from Pará State, north Brazil. Sporozoites are found principally in the red blood cells (84%) in the peripheral blood but also occur in lymphocytes and monocytes. Experimental transmission to three uninfected P. marmoratus was achieved after feeding them with laboratory-bred Culex pipiens fatigans which had engorged on an infected lizard 14 days previously. The cycle of development in the small intestine of P. marmoratus takes approximately 30 days: schizogony, gametogony and fertilization of the macrogametocytes is in the epithelial cells of the gut, with zygotes penetrating the lamina propria, where the mature oocysts develop. Living oocysts average 14·3 × 13·3 μm, and are approximately 10·0 μm as seen in histological sections. During the period of intestinal development, the parasite also undergoes asexual multiplication within cells of the spleen and liver by a process which appears to be endodyogeny. The exact time required before the first invasion of the peripheral blood by the sporozoites remains to be ascertained, but is some time within 30–45 days after the lizard ingests the infected mosquitoes. Morphology of the sporozoite in the vertebrate host is variable and depends on the host cell occupied; there may be 1 or 2 refractile bodies. Reduction or fusion of these to a single refractile body in those sporozoites within the gut cells of the infected mosquito suggests that the bodies may represent some form of energy source that is used up during this latent phase in the insect vector. Accumulation of sporozoites takes place in the reticulo-endothelial cells of the viscera, in particular the pigmentladen cells of the liver and lung. Attempts to infect other species of lizards, Tropidurus torquatus (Iguanidae) and Ameiva ameiva (Teiidae) failed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonorris, J. S., & Ball, G. H., (1955). Schellackia occidentalis n.sp., a blood-inhabiting coccidian found in lizards in Southern California. Journal of Protozoology 2, 31–4.CrossRefGoogle Scholar
Bray, R. S., & Garnham, P. C. C., (1962). The Giemsa-Colophonium method for staining protozoa in tissue sections. Indian Journal of Malariology 16, 153–5.Google ScholarPubMed
Franca, C., (1909). Sur les Hématozoaires des Sauriens. I. Hémogrégarines de Lacerta ocellata. Archivos do Real Institute bacteriólogico Camara Pestana 2, 337–60.Google Scholar
Frenkel, J. K., (1974). Advances in the biology of sporozoa. Zeitschrift für Parasitenkunde 45, 125–62.CrossRefGoogle ScholarPubMed
Lainson, R., (1959). Atoxoplasma Garnham 1950, as a synonym for Lankesterella Labeé 1889. Its life cycle in the English sparrow (Passer domesticus domesticus Linn). Journal of Protozoology 6, 360–71.CrossRefGoogle Scholar
Lainson, R., (1965). Parasitological studies in British Honduras: II. Cyclospora niniae sp. nov. (Eimeriidae, Cyclosporinae) from the snake Ninia sebae sebae (Colubridae). Annals of Tropical Medicine and Parasitology 59, 159–63.CrossRefGoogle ScholarPubMed
Lainson, R., (1968). Parasitological studies in British Honduras: III. Some coccidial parasites of mammals. Annals of Tropical Medicine and Parasitology 62, 252–9.CrossRefGoogle Scholar
Lainson, R., Landau, I., & Shaw, J. J., (1971). On a new family of non-pigmented parasites in the blood of reptiles: Garniidae fam.nov. (Coccidiida: Haemosporidiidea). Some species of the new genus, Garnia. International Journal of Parasitology 1, 241–50.CrossRefGoogle Scholar
Lainson, R., Shaw, J. J., & Landau, I., (1975). Some blood parasites of the Brazilian lizards Plica umbra and Uranoscodon superciliosa (Iguanidae). Parasitology 70, 119–41.CrossRefGoogle Scholar
Landau, I., (1973). Diversité des mécanismes assurant la pérennité de l'infection chez les sporozoaires coccidiomorphes. Mémoires du Muséum National d' Histoire Naturelle A 77, 1–62.Google Scholar
Landau, I., (1974). Hypothèses sur la phylogénie des Coccidiomorphes de Vertébrés. Zeitschrift für Parasitenkunde 45, 6375.CrossRefGoogle Scholar
Le Bail, O., & Landau, I., (1974). Description et cycle biologique expérimental de Schellackia balli n.sp. (Lankesterellidae) parasite de Crapauds de Guyane. Annales de Parasitologie Humaine et Comparée, 49 (6). 663668.CrossRefGoogle Scholar
Levine, N. D., (1973). In The Coccidia (ed. Hammond, D. M. and Long, P. L.). Baltimore: University Park Press.Google Scholar
Reichenow, E., (1919). Der Entwicklungsgang des Hämococcidien Karyolysus und Schellackia nov. gen. Sitzungsbuch Berlin Oesellschaft Naturfreunde, Berlin, pp. 440–7.Google Scholar
Reichenow, E., (1921). Die Coccidien. In Prowazek A., Handbuch der pathogenen Protozoen 3, Leif. 8, 1136–277.Google Scholar
Rogier, E., & Landau, I., (1975). Description de Schellackia golvani n.sp. (Lankesterellidae), parasite de Lézards de Guadeloupe. Bulletin du Muséum National d' Histoire Naturelle, 3, série, no. 284, Zoologie 194, 91–7Google Scholar