Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T20:11:58.376Z Has data issue: false hasContentIssue false

Size relationships between the parasitic copepod, Lernanthropus cynoscicola, and its fish host, Cynoscion guatucupa

Published online by Cambridge University Press:  21 September 2005

J. T. TIMI
Affiliation:
Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina
A. L. LANFRANCHI
Affiliation:
Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina

Abstract

The effects of the size of Cynoscion guatucupa on the size and demographic parameters of their parasitic copepod Lernanthropus cynoscicola were evaluated. Prevalence of copepods increased with host size up to fish of intermediate length, then it decreased, probably because changes in size of gill filaments affect their attachment capability, enhancing the possibility of being detached by respiratory currents. Body length of copepods was significantly correlated with host length, indicating that only parasites of an ‘adequate’ size can be securely attached to a fish of a given size. The absence of relationship between the coefficient of variability in copepod length and both host length and number of conspecifics, together with the host-size dependence of both male and juvenile female sizes, prevent to interpret this relationship as a phenomenon of developmental plasticity. Therefore, the observed peak of prevalence could reflect the distribution of size frequencies in the population of copepods, with more individuals near the average length. Concluding, the ‘optimum’ host size for L. cynoscicola could merely be the adequate size for most individuals in the population, depending, therefore, on a populational attribute of parasites. However, its location along the host size range could be determined by a balance between fecundity and number of available hosts, which increases and decreases, respectively, with both host and parasite size.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arneberg, P., Skorping, A. and Read, A. F. ( 1998). Parasite abundance, body size, life histories, and the energetic equivalence rule. American Naturalist 151, 497513.CrossRefGoogle Scholar
Boxshall, G. A. ( 1974). Infections with parasitic copepods in North Sea marine fishes. Journal of the Marine Biological Association of the United Kingdom 54, 355372.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. ( 1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Caltran, H. and Silan, P. ( 1996). Gill filaments of Liza ramada, a biotope for ectoparasites: surface area acquisitions using image analysis and growth models. Journal of Fish Biology 49, 12671279.CrossRefGoogle Scholar
Cordo, H. D. ( 1986). Estudios biológicos sobre peces costeros con datos de dos campañas de investigación realizadas en 1981. III. La pescadilla de red (Cynoscion striatus). Publicaciones de la Comisión Técnica Mixta del Frente Marítimo 1, 1527.Google Scholar
Cousseau, M. B., Cotrina, C. P., Cordo, H. D. and Burgos, G. E. ( 1986). Análisis de datos biológicos de corvina rubia (Micropogonias furnieri) y pescadilla de red (Cynoscion striatus) obtenidos en dos campañas del año 1983. Publicaciones de la Comisión Técnica Mixta del Frente Marítimo 1, 319332.Google Scholar
Cressey, R. F. and Collette, B. B. ( 1970). Copepods and needlefishes: a study in host-parasite relationships. Fishery Bulletin 68, 347432.Google Scholar
Cressey, R. F., Collette, B. B. and Russo, J. L. ( 1983). Copepods and scombrid fishes: a study in host-parasite relationships. Fishery Bulletin 81, 227265.Google Scholar
Dogiel, V. A. ( 1964). General Parasitology (English translation). Oliver and Boyd. Edinburgh and London.
Duerr, H. P., Dietz, K. and Eichner, M. ( 2003). On the interpretation of age-intensity profiles and dispersion patterns in parasitological surveys. Parasitology 126, 87101. DOI 10.1017/S0031182002002561.CrossRefGoogle Scholar
Etchegoin, J. A. and Sardella, N. H. ( 1990). Some ecological aspects of the copepod parasites of the common hake, Merluccius hubbsi, from the Argentine-Uruguayan coasts. International Journal for Parasitology 20, 10091014.CrossRefGoogle Scholar
Guégan, J.-F., Lambert, A., Lévêque, C., Combes, C. and Euzet, L. ( 1992). Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia 90, 197204.Google Scholar
Harvey, P. H. and Keymer, A. E. ( 1991). Comparing life histories using phylogenies. Philosophical Transactions of the Royal Society of London. Series B 332, 3139.CrossRefGoogle Scholar
Ho, J.-S. and Do, T. T. ( 1985). Copepods of the family Lernanthropidae parasitic on Japanese marine fishes, with a phylogenetic analysis of the Lernanthropus genera. Reports of the Sado Marine Biological Station, Niigata University 15, 3176.Google Scholar
Janovy, J. Jr., Snyder, S. D. and Clopton, R. E. ( 1997). Evolutionary constraints on population structure: the parasites of Fundulus zebrinus (Pisces: Cyprinodontidae) in the South Platte River of Nebraska. Journal of Parasitology 83, 584592.CrossRefGoogle Scholar
Kabata, Z. ( 1959). Ecology of the genus Acanthochondria Oakley (Copepoda, Parasitica). Journal of the Marine Biological Association of the United Kingdom 38, 249261.CrossRefGoogle Scholar
Kabata, Z. ( 1981). Copepoda (Crustacea) parasitic on fishes: problems and perspectives. Advances in Parasitology 19, 171.Google Scholar
Klug, W. S. and Cummings, M. R. ( 1999). Conceptos de Genética. 5th Edn. Prentice Hall Iberia, Madrid.
Lo, C. M., Morand, S. and Galtzin, R. ( 1998). Parasite diversity/host age and size relationship in three coral reef fishes from French Polynesia. International Journal for Parasitology 28, 16951708. DOI: 10.1016/S0020-7519(98)00140-4.CrossRefGoogle Scholar
Luque, J. L., Mouillot, D. and Poulin, R. ( 2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671682. DOI 10.1017/S0031182004005050.CrossRefGoogle Scholar
Morand, S., Hafner, M. S., Page, R. D. M. and Reed, D. L. ( 2000). Comparative body size relationships in pocket gophers and their chewing lice. Biological Journal of the Linnean Society 70, 239249.CrossRefGoogle Scholar
Morand, S., Legendre, P., Gardner, S. L. and Hugot, J. P. ( 1996). Body size evolution of oxyurid parasites: the role of hosts. Oecologia 107, 274281.CrossRefGoogle Scholar
Morand, S., Simková, A., Matejusová, I., Plaisance, L., Verneau, O. and Desdevises, Y. ( 2002). Investigating patterns may reveal processes: evolutionary ecology of ectoparasitic monogeneans. International Journal for Parasitology 32, 111119. DOI: 10.1016/S0020-7519(01)00347-2.CrossRefGoogle Scholar
Morand, S. and Sorci, G. ( 1998). Determinants of life-history evolution in nematodes. Parasitology Today 14, 193193.CrossRefGoogle Scholar
Noble, E. R., King, R. E. and Jacobs, B. L. ( 1963). Ecology of the gill parasites Gillichthys mirabilis. Ecology 4, 295305.CrossRefGoogle Scholar
Poulin, R. ( 1995 a). Phylogeny, ecology and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.Google Scholar
Poulin, R. ( 1995 b). Evolution of parasite life history traits; myths and reality. Parasitology Today 11, 342345.Google Scholar
Poulin, R. ( 1995 c). Evolutionary influences on body size in free-living and parasitic isopods. Biological Journal of the Linnean Society 54, 231244.Google Scholar
Poulin, R. ( 1995 d). Clutch size and egg size in free living and parasitic copepods: a comparative analysis. Evolution 49, 325336.Google Scholar
Poulin, R. ( 1995 e). Ecological determinants of body size and clutch size in amphipods: a comparative analysis. Functional Ecology 9, 364370.Google Scholar
Poulin, R. ( 1996 a). Sexual size dimorphism and transition to parasitism in copepods. Evolution 50, 25202523.Google Scholar
Poulin, R. ( 1996 b). The evolution of body size in the Monogenea: the role of host size and latitude. Canadian Journal of Zoology 74, 725732.Google Scholar
Poulin, R. ( 2000). Variation in the intraspecific relationships between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56, 123137. DOI: 10.1111/j.1095-8649.2000.tb02090.x.CrossRefGoogle Scholar
Poulin, R., Curtis, M. A. and Rau, M. E. ( 1991). Size, behaviour, and acquisition of ectoparasitic copepods by brook trout, Salvelinus fontinalis. Oikos 61, 169174.CrossRefGoogle Scholar
Poulin, R. and Hamilton, W. J. ( 1995). Ecological determinants of body size and clutch size in amphipods: a comparative approach. Functional Ecology 9, 364376.CrossRefGoogle Scholar
Poulin, R. and Morand, S. ( 1997). Parasite body size distributions: interpreting patterns of skewness. International Journal for Parasitology 27, 959964. DOI: 10.1016/S0020-7519(97)00055-6.CrossRefGoogle Scholar
Poulin, R., Rau, M. E. and Curtis, M. A. ( 1991). Infection of brook trout fry. Salvelinus fontinalis, by ectoparasitic copepods: the role of host behaviour and initial parasite load. Animal Behaviour 41, 467476.Google Scholar
Poulin, R. and Valtonen, E. T. ( 2001). Nested assemblages resulting from host size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology 31, 11941204. DOI: 10.1016/S0020-7519(01)00262-4.CrossRefGoogle Scholar
Price, P. W. ( 1980). Evolutionary Biology of Parasites. Princeton University Press. Princeton, N.J.
Rawson, M. V. Jr. ( 1976). Population biology of parasites of striped mullet, Mugil cephalus L. I: Monogenea. Journal of Fish Biology 9, 185194.CrossRefGoogle Scholar
Rohde, K. ( 1991). Intra- and interspecific interactions in low density populations in resource-rich habitats. Oikos 60, 91104.CrossRefGoogle Scholar
Saad-Fares, A. and Combes, C. ( 1992). Abundance/host size relationship in a fish trematode community. Journal of Helminthology 66, 187192.CrossRefGoogle Scholar
Sasal, P., Trouvé, S., Müller-Graf, C. and Morand, S. ( 1999). Specificity and host predictability: a comparative analysis among monogenean parasites of fish. Journal of Animal Ecology 68, 437444. DOI: 10.1046/j.1365-2656.1999.00313.x.CrossRefGoogle Scholar
Shotter, R. A. ( 1973). Changes in the parasitic fauna of the whiting, Odontogadus merlangus L. with the age and sex of the host, season, and from different areas in the vivinity of the Isle of Man. Journal of Fish Biology 5, 559573.Google Scholar
Simková, A., Desdevises, Y., Gelnar, M. and Morand, S. ( 2001). Morphometric correlates of host specificity in Dactylogyrus species (Monogenea) parasites of European Cyprinid fish. Parasitology 123, 169177.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. ( 1979). Biometría. Principios y Métodos Estadísticos en la Investigación Biológica. Blume, Madrid.
Sorci, G., Morand, S. and Hugot, J. P. ( 1997). Host-parasite coevolution: comparative evidence for covariation of life-history traits in primates and oxyurid parasites. Proceedings of the Royal Society of London. Series B 264, 285289. DOI: 10.1098/rspb.1997.0040.CrossRefGoogle Scholar
Timi, J. T. ( 2003). Habitat selection by Lernanthropus cynoscicola (Copepoda: Lernanthropidae): host as physical environment, a major determinant of niche restriction. Parasitology 127, 155163. DOI: 10.1007/S0031182003003470.CrossRefGoogle Scholar
Timi, J. T., Lanfranchi, A. L. and Poulin, R. ( 2005). Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola?. Parasitology Research 95: 14. DOI: 10.1007/S00436-004-1242-1.CrossRefGoogle Scholar
Van Damme, P. A., Maertens, D., Arrumm, A., Hamerlynck, O. and Ollevier, F. ( 1993). The role of Callionymuys lyra and C. reticulates in the life cycle of Lernaeocera lusci in Belgian coastal waters (Southern Bight of the North Sea). Journal of Fish Biology 42, 395401.Google Scholar
Zar, J. H. ( 1984). Biostatistical Analysis. 2nd Edn. Prentice-Hall Inc., Englewood Cliffs, New Jersey.