Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:43:07.264Z Has data issue: false hasContentIssue false

Species delimitation in trematodes using DNA sequences: Middle-American Clinostomum as a case study

Published online by Cambridge University Press:  30 August 2016

GERARDO PÉREZ-PONCE DE LEÓN*
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-153, México d.f., C.P. 04510, Mexico
MARTÍN GARCÍA-VARELA
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-153, México d.f., C.P. 04510, Mexico
CARLOS D. PINACHO-PINACHO
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-153, México d.f., C.P. 04510, Mexico Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México City, Mexico
ANA L. SERENO-URIBE
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-153, México d.f., C.P. 04510, Mexico
ROBERT POULIN
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
*
*Corresponding author: Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México. E-mail: ppdleon@ib.unam.mx

Summary

The recent development of genetic methods allows the delineation of species boundaries, especially in organisms where morphological characters are not reliable to differentiate species. However, few empirical studies have used these tools to delineate species among parasitic metazoans. Here we investigate the species boundaries of Clinostomum, a cosmopolitan trematode genus with complex life cycle. We sequenced a mitochondrial [cytochrome c oxidase subunit I (COI)] gene for multiple individuals (adults and metacercariae) from Middle-America. Bayesian phylogenetic analysis of the COI uncovered five reciprocally monophyletic clades. COI sequences were then explored using the Automatic Barcode Gap Discovery to identify putative species; this species delimitation method recognized six species. A subsample was sequenced for a nuclear gene (ITS1, 5·8S, ITS2), and a concatenated phylogenetic analysis was performed through Bayesian inference. The species delimitation of Middle-American Clinostomum was finally validated using a multispecies coalescent analysis (species tree). In total, five putative species are recognized among our samples. Mapping the second intermediate hosts (fish) onto the species tree suggests that metacercariae of these five species exhibit some level of host specificity towards their fish intermediate host (at the family level), irrespective of geographical distribution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre-Macedo, L., Scholz, T., González-Solís, D., Vidal-Martínez, V., Posel, P., Arjona-Torres, G., Siu-Estrada, E. and Dumailo, S. (2001). Larval helminths parasitizing freshwater fishes from the Atlantic coast of Nicaragua. Comparative Parasitology 68, 4251.Google Scholar
Athokpam, V. D., Jyrwa, D. B. and Tandon, V. (2014). Utilizing ribosomal DNA gene marker regions to characterize the metacercariae (Trematoda: Digenea) parasitizing piscine intermediate hosts in Manipur, Northeast India. Journal Parasitic Diseases 40, 330338.CrossRefGoogle ScholarPubMed
Bandelt, H. J., Forster, P. and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Blasco-Costa, I., Faltynková, A., Georgieva, S., Skírnisson, K., Scholz, T. and Kostadinova, A. (2014). Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. International Journal for Parasitology 44, 703715.CrossRefGoogle ScholarPubMed
Blasco-Costa, I., Cutmore, S. C., Miller, T. L. and Nolan, M. J. (2016 a). Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology 93, 295306.CrossRefGoogle ScholarPubMed
Blasco-Costa, I., Poulin, R. and Presswell, B. (2016 b). Species of Apatemon Szidat, 1928 and Australapatemon Sudarikov, 1959 (Trematoda: Strigeidae) from New Zealand: linking and characterising life cycle stages with morphology and molecules. Parasitology Research 115, 271289.CrossRefGoogle ScholarPubMed
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A. and Drummond, A. J. (2014). BEAST 2: a Software platform for Bayesian Evolutionary Analysis. PLoS Computational Biology 10, e1003537.CrossRefGoogle ScholarPubMed
Caffara, M., Locke, S. A., Gustinelli, A., Marcogliese, D. J. and Fiovaranti, M. L. (2011). Morphological and molecular differentiation of Clinostomum complanatum and Clinostomum marginatum (Digenea: Clinostomidae) metacercariae and adults. Journal of Parasitology 97, 884891.CrossRefGoogle ScholarPubMed
Caffara, M., Bruni, G., Paoletti, C., Gustinelli, A. and Fioravanti, M. L. (2013). Metacercariae of Clinostomum complanatum (Trematoda: Digenea) in European newts Triturus carnifex and Lissotriton vulgaris (Caudata: Salamandridae). Journal of Helminthology 88, 278285.CrossRefGoogle ScholarPubMed
Caffara, M., Davidovich, N., Falk, R., Smirnov, M., Ofek, T., Cummings, D., Gustinelli, A. and Fioravanti, M. L. (2014). Redescription of Clinostomum phalacrocoracis metacercariae (Digenea: Clinostomidae) in cichlids from Lake Kinneret, Israel. Parasite 21, 32.CrossRefGoogle ScholarPubMed
Camargo, A. and Sites, J. W. (2013). Species delimitation: a decade after the Renaissance. In The Species Problem-Ongoing Issues (ed. Pavlinov, I.), pp. 225247. InTech., Croatia.Google Scholar
Carstens, B. C., Pelletier, T. A., Reid, N. M. and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 43694383.CrossRefGoogle ScholarPubMed
Chibwana, F. D., Blasco-Costa, I., Georgieva, S., Hosea, K. M., Nkwengulila, G., Scholz, T. and Kostadinova, A. (2013). A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infectious Genetics and Evolution 17, 6270.CrossRefGoogle ScholarPubMed
Chibwana, F. D., Nkwengulila, G., Locke, S. A., McLughlin, J. D. and Marcogliese, D. J. (2015). Completion of the life cycle of Tylodelphys mashonense (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. Parasitology Research 114, 36753682.CrossRefGoogle ScholarPubMed
Criscione, C. D., Poulin, R. and Blouin, M. S. (2005). Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology 14, 22472257.CrossRefGoogle ScholarPubMed
de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879886.CrossRefGoogle ScholarPubMed
Dzikowski, R., Levy, M. G., Poore, M. F., Flowers, J. R. and Paperna, I. (2004). Clinostomum complanatum and Clinostomum marginatum (Rudolphi, 1819) (Digenea: Clinostomidae) are separate species based on differences in ribosomal DNA. Journal of Parasitology 90, 413414.CrossRefGoogle ScholarPubMed
Flot, J. F. (2015). Species delimitation's coming of age. Systematic Biology 64, 897899.CrossRefGoogle ScholarPubMed
García-Varela, M., Sereno-Uribe, A. L., Pinacho-Pinacho, C. D., Domínguez- Domínguez, O. and Pérez-Ponce de León, G. (2016 a). Molecular and morphological characterization of Austrodiplostomum ostrowskiae Dronen (Digenea: Diplostomatidae), a parasite of cormorants in the Americas. Journal of Helminthology 90, 174185.CrossRefGoogle ScholarPubMed
García-Varela, M., Sereno-Uribe, A. L., Pinacho-Pinacho, C. D., Hernández- Cruz, E. and Pérez-Ponce de León, G. (2016 b). An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1950 (Digenea: Diplostomidae) in central and northern Mexico. Journal of Helminthology. doi: 10.1017/S0022149X15000917.CrossRefGoogle ScholarPubMed
Georgieva, S., Soldánová, M., Pérez-del-Olmo, A., Dangel, D. R., Sitko, J., Sures, B. and Kostadinova, A. (2013). Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. International Journal for Parasitology 43, 5772.CrossRefGoogle ScholarPubMed
Gustinelli, A., Caffara, M., Florio, D., Otachi, E. O., Wathuta, E. M. and Fiovaranti, M. L. (2010). First description of the adult stage of Clinostomum cutaneum Paperna, 1964 (Digenea: Clinostomidae) from grey herons Ardea cinerea L. and a redescription of the metacercaria from the Nile tilapia Oreochromis niloticus niloticus (L.) in Kenya. Systematic Parasitology 76, 3951.CrossRefGoogle Scholar
Heled, J. and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology Evolution 27, 570580.CrossRefGoogle ScholarPubMed
Herrmann, K. K., Poulin, R., Keeney, D. B. and Blasco-Costa, I. (2014). Genetic structure in a progenetic trematode: signs of cryptic species with contrasting reproductive strategies. International Journal for Parasitology 44, 811818.CrossRefGoogle Scholar
Huelsenbeck, J. P. and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Librado, P. and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Locke, S. A., McLaughlin, J. D., Dayanandan, S. and Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology 19, 28132827.CrossRefGoogle Scholar
Locke, S. A., McLaughlin, J. D., Lapierre, A. R., Johnson, P. T. J. and Marcogliese, D. J. (2011). Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. Journal of Parasitology 97, 846851.CrossRefGoogle ScholarPubMed
Locke, S. A., Caffara, M., Marcogliese, D. J. and Fioravanti, M. L. (2015 a). A large-scale molecular survey of Clinostomum (Digenea, Clinostomidae). Zoologica Scripta 44, 203217.CrossRefGoogle Scholar
Locke, S. A., Al-Nasiri, F. S., Caffara, M., Drago, F., Kalbe, M., Lapierre, A. R., McLaughlin, J. D., Nie, P., Overstreet, R., Souza, G. T. R., Takemoto, R. M. and Marcogliese, D. J. (2015 b). Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. International Journal for Parasitology 45, 841855.CrossRefGoogle ScholarPubMed
Luton, K., Walker, D. and Blair, D. (1992). Comparison of ribosomal internal transcribed spacer from two congeneric species of flukes (Plathyhelminthes: Trematoda: Digenea). Molecular Biochemical Parasitology 56, 323328.CrossRefGoogle Scholar
Maddison, D. R. and Maddison, W. P. (2002). MacClade Version 4.0. Sinauer Associates, Sunderland.Google Scholar
Martínez-Aquino, A., Ceccarelli, F. S. and Pérez-Ponce de León, G. (2013). Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host specificity and geographical congruence. Zoological Journal of the Linnean Society of London 168, 116.CrossRefGoogle Scholar
Matthews, D., Cribb, T. H. (1998). Digenetic trematodes of the genus Clinostomum Leidy, 1856 (Digenea: Clinostomidae) from birds of Queensland, Australia, including C. wilsoni n. sp. from Egretta intermedia . Systematic Parasitology 39, 199208.CrossRefGoogle Scholar
Moszczynska, A., Locke, S. A., McLaughlin, D., Marcogliese, D. J., Crease, T. J. (2009). Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resorces 9, 7582.CrossRefGoogle ScholarPubMed
Nadler, S. A. and Pérez-Ponce de León, G. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138, 16881709.CrossRefGoogle ScholarPubMed
Otachi, E. O., Locke, S. A., Jirsa, F., Fellner-Franck, C. and Marcogliese, D. (2014). Morphometric and molecular analyses of Tylodelphys sp. metacercariae (Digenea: Diplostomidae) from the vitreous humour of four fish species from Lake Naivasha, Kenya. Journal of Helminthology 89, 404414.CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G. and Nadler, S. A. (2010). What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.CrossRefGoogle Scholar
Pérez Ponce de León, G., García Prieto, L. and Mendoza-Garfías, B. (2007). Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534, 1247.CrossRefGoogle Scholar
Pérez-Ponce de León, G., Martínez-Aquino, A. and Mendoza-Garfias, B. (2015). Two new species of Phyllodistomum Braun, 1899 (Digenea: Gorgoderidae), from freshwater fishes (Cyprinodontiformes: Goodeidae: Goodeinae) in central Mexico: an integrative taxonomy approach using morphology, ultrastructure and molecular phylogenetics. Zootaxa 4013, 8799.CrossRefGoogle ScholarPubMed
Pinto, H. A., Caffara, M., Fioravanti, M. L. and Melo, A. L. (2015). Experimental and molecular study of cercariae of Clinostomum sp. (Trematoda: Clinostomidae) from Biomphalaria spp. (Mollusca: Planorbidae) in Brazil. Journal of Parasitology 101, 108113.CrossRefGoogle ScholarPubMed
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters 7, 241244.CrossRefGoogle ScholarPubMed
Poulin, R. (2014). Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology 44, 581589.CrossRefGoogle ScholarPubMed
Poulin, R. and Keeney, D. B. (2008). Host specificity under molecular and experimental scrutiny. Trends in Parasitology 24, 2428.CrossRefGoogle ScholarPubMed
Poulin, R., Krasnov, B. R. and Mouillot, D. (2011). Host specificity in phylogenetic and geographic space. Trends in Parasitology 27, 355361.CrossRefGoogle ScholarPubMed
Prévot, V., Jordaens, K., Sonet, G. and Backeljau, T. (2013). Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata). PLoS ONE 8, e60736.CrossRefGoogle ScholarPubMed
Puillandre, N., Lambert, A., Brouillet, S. and Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 18641877.CrossRefGoogle ScholarPubMed
Rambaut, A. (2006). FigTree v1.3.1. Institute of Evolutionary Biology. University of Edinburgh, UK.Google Scholar
Rambaut, A. and Drummond, A. J. (2007). Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Ratnasingham, S. and Hebert, P. D. (2013). A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213.CrossRefGoogle ScholarPubMed
Sandlund, O. T., Daverdin, R. H., Choudhury, A., Brooks, D. R. and Diserud, O. H. (2010). A survey of freshwater fishes and their macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica. Norwegian Institute for Nature Research Report 635 Trondheim, Norway.Google Scholar
Senapin, S., Phiwsaiya, K., Laosinchai, P., Kowasupat, C., Ruenwongsa, P. and Panijpan, B. (2014). Phylogenetic analysis of parasitic trematodes of the genus Euclinostomum found in Trichopsis and Betta fish. Journal of Parasitology 100, 368371.CrossRefGoogle ScholarPubMed
Sereno-Uribe, A. L., Pinacho-Pinacho, C. D., García-Varela, M. and Pérez-Ponce de León, G. (2013). Using mitochondrial and ribosomal DNA sequences to test the taxonomic validity of Clinostomum complanatum Rudolphi, 1814 in fish-eating birds and freshwater fishes in Mexico, with the description of a new species. Parasitology Research 112, 28552870.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, H. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Vilas, R., Criscione, C. D. and Blouin, M. S. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Wilgenbusch, J. C., Warren, D. L. and Swofford, D. L. (2004). AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty.Google Scholar
Supplementary material: PDF

Pérez-Ponce De León supplementary material

Figure S1

Download Pérez-Ponce De León supplementary material(PDF)
PDF 473.9 KB
Supplementary material: File

Pérez-Ponce De León supplementary material

Table S1

Download Pérez-Ponce De León supplementary material(File)
File 40.9 KB
Supplementary material: File

Pérez-Ponce De León supplementary material

Table S2

Download Pérez-Ponce De León supplementary material(File)
File 54.8 KB