Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T11:49:32.137Z Has data issue: false hasContentIssue false

Towards a comprehensive simulation model of malaria epidemiology and control

Published online by Cambridge University Press:  11 August 2008

T. SMITH*
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
N. MAIRE
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
A. ROSS
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
M. PENNY
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
N. CHITNIS
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
A. SCHAPIRA
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
A. STUDER
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
B. GENTON
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
C. LENGELER
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
F. TEDIOSI
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
D. DE SAVIGNY
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
M. TANNER
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland
*
*Corresponding author. E-mail: Thomas-A.Smith@unibas.ch

Summary

Planning of the control of Plasmodium falciparum malaria leads to a need for models of malaria epidemiology that provide realistic quantitative prediction of likely epidemiological outcomes of a wide range of control strategies. Predictions of the effects of control often ignore medium- and long-term dynamics. The complexities of the Plasmodium life-cycle, and of within-host dynamics, limit the applicability of conventional deterministic malaria models. We use individual-based stochastic simulations of malaria epidemiology to predict the impacts of interventions on infection, morbidity, mortality, health services use and costs. Individual infections are simulated by stochastic series of parasite densities, and naturally acquired immunity acts by reducing densities. Morbidity and mortality risks, and infectiousness to vectors, depend on parasite densities. The simulated infections are nested within simulations of individuals in human populations, and linked to models of interventions and health systems. We use numerous field datasets to optimise parameter estimates. By using a volunteer computing system we obtain the enormous computational power required for model fitting, sensitivity analysis, and exploration of many different intervention strategies. The project thus provides a general platform for comparing, fitting, and evaluating different model structures, and for quantitative prediction of effects of different interventions and integrated control programmes.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aron, J. L. (1988). Mathematical modeling of immunity to malaria. Mathematical Biosciences 90, 385396.Google Scholar
Bailey, N. (1982). The Biomathematics of Malaria. Charles Griffin and Co Ltd, London.Google Scholar
Beier, J. C., Oster, C. N., Onyango, F. K., Bales, J. D., Sherwood, J. A., Perkins, P. V., Chumo, D. K., Koech, D. V., Whitmire, R. E. and Roberts, C. R. (1994). Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya. American Journal of Tropical Medicine and Hygiene 50, 529536.CrossRefGoogle Scholar
Bradley, D. J. (1982). Epidemiological models theory and reality. In The Population Dynamics of Infectious Diseases: Theory and Application (ed. Anderson, R. M.), pp. 320361. Chapman Hall, London and New York.Google Scholar
Briggs, A. H. (2000). Handling uncertainty in cost-effectiveness models. Pharmacoeconomics. 17, 479500.CrossRefGoogle ScholarPubMed
Carneiro, I., Smith, T., Lusingu, J., Malima, R., Utzinger, J. and Drakeley, C. (2006). Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 8289.CrossRefGoogle ScholarPubMed
Chitnis, N., Steketee, R. W. and Smith, T. (2007). A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics (in press).Google Scholar
Collins, W. E. and Jeffery, G. M. (1999). A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. American Journal of Tropical Medicine and Hygiene 61, 419.CrossRefGoogle ScholarPubMed
Collins, W. E. and Jeffery, G. M. (2003). A retrospective examination of mosquito infection on humans infected with Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 68, 366371.CrossRefGoogle ScholarPubMed
Dietz, K., Molineaux, L. and Thomas, A. (1974). A malaria model tested in the African savannah. Bulletin of the World Health Organization 50, 347357.Google ScholarPubMed
Flessa, S. (2002). Malaria Und AIDS: Gesundheitökonomische Analysen auf der Grundlage von Disease Dynamic Modellen. Hans Jacobs, Lage.Google Scholar
Gatton, M. L. and Cheng, Q. (2004). Modeling the development of acquired clinical immunity to Plasmodium falciparum malaria. Infection and Immunity 72, 65386545.Google Scholar
Goodman, C. A., Coleman, P. G. and Mills, A. (2000). Economic Analysis of Malaria Control in Sub-Saharan Africa. Global Forum for Health Research, Geneva.Google Scholar
Habbema, J. D. F., Alley, E. S., Plaisier, A. P., van Oortmarssen, G. J. and Remme, J. H. (1992). Epidemiological modelling for onchocerciasis control. Parasitology Today 8, 99103.Google Scholar
Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.Google Scholar
Killeen, G. F., Ross, A. and Smith, T. (2006). Infectiousness of malaria-endemic human populations to vectors. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 3845.Google Scholar
Killeen, G. F. and Smith, T. A. (2007). Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 867880.CrossRefGoogle ScholarPubMed
Kiszewski, A., Johns, B., Schapira, A., Delacollette, C., Crowell, V., Tan-Torres, T., Amenashewa, B., Teklehaimanot, A. and Nafo-Traoré, F. (2007). Estimated global resources needed to attain international malaria control goals. Bulletin of the World Health Organization 85, 623630.CrossRefGoogle ScholarPubMed
Kitua, A., Smith, T., Alonso, P. L., Masanja, H., Urassa, H., Menendez, C., Kimario, J. and Tanner, M. (1996). Plasmodium falciparum malaria in the first year of life in an area of intense and perennial transmission. Tropical Medicine and International Health 1, 475484.Google Scholar
Knols, B. G., De Jong, R. and Takken, W. (1995). Differential attractiveness of isolated humans to mosquitoes in Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 89, 604606.CrossRefGoogle ScholarPubMed
Koella, J. C. and Zaghloul, L. (2008). Using evolutionary costs to enhance the efficacy of malaria control via genetically manipulated mosquitoes. Parasitology 135 (this special issue) Jan 24; 1–8 [E-pub ahead of print].CrossRefGoogle ScholarPubMed
Macdonald, G. (1957). The Epidemiology and Control of Malaria. Oxford University Press, London.Google Scholar
Maire, N., Aponte, J. J., Ross, A., Thompson, R., Alonso, P., Utzinger, J., Tanner, M. and Smith, T. (2006 a). Modeling a field trial of the RTS,S/AS02A malaria vaccine. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 104110.CrossRefGoogle ScholarPubMed
Maire, N., Smith, T., Ross, A., Owusu-Agyei, S., Dietz, K. and Molineaux, L. (2006 b). A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 1931.CrossRefGoogle Scholar
Maire, N., Tediosi, F., Ross, A. and Smith, T. (2006 c). Predictions of the epidemiologic impact of introducing a pre-erythrocytic vaccine into the expanded program on immunization in sub-Saharan Africa. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 111118.CrossRefGoogle ScholarPubMed
Marsh, K. and Snow, R. (1999). Malaria transmission and morbidity. Parasitologia 41, 241246.Google Scholar
McKenzie, F. E. and Bossert, W. H. (2005). An integrated model of Plasmodium falciparum dynamics. Journal of Theoretical Biology 232, 411426.Google Scholar
Molineaux, L., Diebner, H. H., Eichner, M., Collins, W. E., Jeffery, G. M. and Dietz, K. (2001). Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology 122, 379391.CrossRefGoogle ScholarPubMed
Molineaux, L. and Gramiccia, G. (1980). The Garki Project. World Health Organization, Geneva.Google Scholar
Owusu-Agyei, S., Smith, T., Beck, H.-P., Amenga-Etego, L. and Felger, I. (2002). Molecular epidemiology of Plasmodium falciparum infections among asymptomatic inhabitants of a holoendemic malarious area in northern Ghana. Tropical Medicine and International Health 7, 421428.CrossRefGoogle ScholarPubMed
Plaisier, A. P., van Oortmarssen, G. J., Habbema, J. D. F., Remme, J. and Alley, E. S. (1990). ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Computer Methods and Programs in Biomedicine 31, 4356.CrossRefGoogle Scholar
Port, G. R., Boreham, P. F. L. and Bryan, J. H. (1980). The relationship of host size to feeding by mosquitos of the Anopheles gambiae Giles complex (Diptera: Culicidae). Bulletin of Entomological Research 70, 133144.Google Scholar
Rogier, C., Commenges, D. and Trape, J. F. (1996). Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. American Journal of Tropical Medicine and Hygiene 54, 613619.Google Scholar
Roll Back Malaria (2005). World Malaria Report 2005. World Health Organization and UNICEF, Geneva.Google Scholar
Ross, A., Killeen, G. F. and Smith, T. (2006 a). Relationships of host infectivity to mosquitoes and asexual parasite density in Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 3237.Google Scholar
Ross, A. and Smith, T. (2006). The effect of malaria transmission intensity on neonatal mortality in endemic areas. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 7481.CrossRefGoogle ScholarPubMed
Ross, A., Maire, N., Molineaux, L. and Smith, T. (2006 b). An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 6373.CrossRefGoogle ScholarPubMed
Ross, R. (1911). The Prevention of Malaria. Murray, London.Google ScholarPubMed
Rowe, A., Steketee, R., Arnold, F., Wardlaw, T., Basu, S., Bakyaita, N., Lama, M., Winston, C., Lynch, M., Cibulskis, R., Shibuya, K., Ratcliffe, A. and Nahlen, B. (2007). Viewpoint: evaluating the impact of malaria control efforts on mortality in sub-Saharan Africa. Tropical Medicine and International Health 12, 15241539.CrossRefGoogle ScholarPubMed
Sama, W., Killeen, G. and Smith, T. (2004). Estimating the duration of Plasmodium falciparum infection from trials of indoor residual spraying. American Journal of Tropical Medicine and Hygiene 70, 625634.Google Scholar
Sama, W., Owusu-Agyei, S., Felger, I., Dietz, K. and Smith, T. (2006). Age and seasonal variation in the transition rates and detectability of Plasmodium falciparum malaria. Parasitology 132, 1321.Google Scholar
Saul, A. (2008). Efficacy model for mosquito stage, transmission blocking vaccines for malaria. Parasitology 135 (this special issue) Feb 7; 1–10 [E-pub ahead of print].Google Scholar
Saul, A., Graves, P. M. and Kay, B. H. (1990). A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection-rates. Journal of Applied Ecology 27, 123133.Google Scholar
Sinden, R. E., Dawes, E. J., Alavi, Y., Waldock, J., Finney, O., Mendoza, J., Butcher, G. A., Andrews, L., Hill, A. V., Gilbert, S. C. and Basáñez, M.-G. (2007). Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. Public Library of Science Pathogens 3, e195.Google Scholar
Smith, D. L., McKenzie, F. E., Snow, R. W. and Hay, S. I. (2007). Revisiting the basic reproductive number for malaria and its implications for malaria control. Public Library of Science Biology 5, e42.Google ScholarPubMed
Smith, T., Killeen, G. F., Maire, N., Ross, A., Molineaux, L., Tediosi, F., Hutton, G., Utzinger, J., Dietz, K. and Tanner, M. (2006 a). Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: Overview. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 110.Google Scholar
Smith, T., Maire, N., Dietz, K., Killeen, G. F., Vounatsou, P., Molineaux, L. and Tanner, M. (2006 b). Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 1118.Google Scholar
Smith, T., Ross, A., Maire, N., Rogier, C., Trape, J. F. and Molineaux, L. (2006 c). An epidemiological model of the incidence of acute illness in Plasmodium falciparum malaria. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 5662.CrossRefGoogle Scholar
Smith, T. A. (2008). Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics. Malaria Journal 7, 12, 110.Google Scholar
Snow, R., Omumbo, J., Lowe, B., Molyneux, C. S., Obiero, J. O., Palmer, A., Weber, M. W., Pinder, M., Nahlen, B., Obonyo, C., Newbold, C., Gupta, S. and Marsh, K. (1997). Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349, 16501654.Google Scholar
Stolk, W. A., de Vlas, S. J., Boors boom, G. J. J. M. and Habbema, J. D. F. (2008). LYMFASIM, a simulation model for predicting the impact of lymphatic filariasis control: quantification for African villages. Parasitology 135 (in press).CrossRefGoogle ScholarPubMed
Struchiner, C. J., Halloran, M. E. and Spielman, A. (1989). Modeling malaria vaccines. I: New uses for old ideas. Mathematical Biosciences 94, 87113.Google Scholar
Tediosi, F., Hutton, G., Maire, N., Smith, T. A., Ross, A. and Tanner, M. (2006 a). Predicting the cost-effectiveness of introducing a pre-erythrocytic malaria vaccine into the expanded program on immunization in Tanzania. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 131143.Google Scholar
Tediosi, F., Maire, N., Smith, T., Hutton, G., Utzinger, J., Ross, A. and Tanner, M. (2006 b). An approach to model the costs and effects of case management of Plasmodium falciparum malaria in sub-Saharan Africa. American Journal of Tropical Medicine and Hygiene 75 (Suppl 2), 90103.CrossRefGoogle ScholarPubMed
Trape, J. F. and Rogier, C. (1996). Combating malaria morbidity and mortality by reducing transmission. Parasitology Today 12, 236240.Google Scholar