Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T18:35:05.174Z Has data issue: false hasContentIssue false

Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies

Published online by Cambridge University Press:  06 April 2009

B. A. Kukla
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
P. A. O. Majiwa
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
J. R. Young
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
S. K. Moloo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
O. ole-Moiyoi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya

Summary

Species- and subspecies-specific trypanosome DNA hybridization probes have been employed in the detection and identification of trypanosome infections in Glossina morsitans centralis. Several ways of sample preparation including the use of tsetse organ suspensions, proboscides and dissected midguts, as well as tsetse abdominal content touch-blots were explored. The results of hybridization of radio-isotope-labelled species-specific DNA probes to tsetse samples indicated that it was possible to detect trypanosomes in the organs where parasite development is known to characteristically occur for each subgenus. Duplicate slot-blots of samples prepared from midguts of tsetse infected with 2 strains of T. congolense and from non-infected fly controls show that it is not only possible to detect infection in tsetse but also to identify the strain of parasite present in a sample after hybridization with the DNA probes specific for each strain. The results, obtained after hybridization of sequential abdominal touch-blots from the same fly with the DNA probe specific for one strain of T. congolense, indicated that at least 8 positive signals can be observed after an overnight exposure. Because of their simplicity and potentially low cost, the techniques described here would be appealing for screening large numbers of tsetse samples from the field for the presence of any trypanosome residing in the guts or proboscis of the vector. In addition, the possibility of doing multiple touch-blots from the same fly gives the opportunity of detecting mixed trypanosome infections in the vector.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D. C., Butcher, J., Gibson, L. J. & Williams, R. H. (1985). Characterisation of Leishmania sp. by DNA Hybridisation Probes: a Laboratory Manual of Simplified Methods. Geneva, Switzerland: World Health Organization (WHO: TDR).Google Scholar
Barker, D. C, Gibson, L. J., Kennedy, W. P. K., Nasser, A. A. A. A. & Williams, R. H. (1986 a). The potential of using recombinant DNA species-specific probes for identification of tropical Leishmania. Parasitology 91, S 139–74.CrossRefGoogle Scholar
Barker, R. H. Jr, Suebsaeng, L., Rooney, W., Alecrim, G. C, Dourado, H. V. & Wirth, D. F. (1986 b). Specific DNA probe for the diagnosis of Plasmodium falciparum malaria. Science 231, 1434–6.CrossRefGoogle ScholarPubMed
Barry, J. D. & Gathuo, H. (1984). Antigenic variation in T. vivax: isolation of a serodeme. Parasitology 89, 4958.Google Scholar
Borst, P., Van der Ploeg, L. H. T., Van Hoek, J. F. M., Tas, J. & James, J. (1982). On the DNA content and ploidy of trypanosomes. Molecular and Biochemical Parasitology 6, 1323.Google Scholar
Britten, R. J. & Kohne, D. E. (1968). Repeated sequences in DNA. Science 161, 529–46.Google Scholar
Denhabdt, D. (1966). A membrane-filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23, 641–6.CrossRefGoogle Scholar
Doyle, J. J., Hirumi, H., Hirumi, K., Lupton, E. N. & Cross, G. A. M. (1980). Antigenic variation in clones of animal-infective Trypanosoma brucei derived and maintained in vitro. Parasitology 80, 359–69.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endo-nuclease fragments to high specific activity. Analytical Biochemistry 132, 613.Google Scholar
Forster, A. C, McInnes, J. L., Skingle, D. C. & Symons, R. M. (1985). Non-radioactive hybridisation probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photo-biotin. Nucleic Acids Research 13, 745–61.Google Scholar
Franzen, L., Shabo, R., Perlmann, M., Wigzell, H., Westin, G., Aslund, L., Persson, T. & Pettersson, U. (1984). Analysis of clinical specimens by hybridisation with probe containing repetitive DNA from Plasmodium falciparum. A novel approach to malaria diagnosis. The Lancet 1984, 1, 525–7.CrossRefGoogle ScholarPubMed
Gashumba, J. K. (1986). Two enzymatically distinct stocks of Trypanosoma congolense. Research in Veterinary Science 40, 411–12.CrossRefGoogle Scholar
Geigy, R. & Kauffmann, M. (1973). Sleeping sickness survey in the Serengeti area (Tanzania) 1971. Part I: Examination of large mammals for trypanosomes. Acta Tropica 30, 1223.Google Scholar
Gonzalez, A., Prediger, E., Huecas, M. E., Nogueira, N. & Lizardi, P. M. (1984). Minichromo-somal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proceedings of the National Academy of Sciences, USA, 81, 3356–60.CrossRefGoogle Scholar
Grab, D. J. & Bwayo, J. J. (1982). Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Tropica 39, 363–6.Google ScholarPubMed
Hoare, C. A. (1970). Systematic description of the mammalian trypanosomes of Africa. In The African Trypanosomiases (ed. Mulligan, H. W.), pp. 2459. London: George Allen & Unwin.Google Scholar
Holder, A. A. & Cross, G. A. M. (1981). Glycopeptides from variant surface glycoproteins of Trypanosoma brucei: C-terminal location of the antigenically cross-reacting carbohydrate moieties. Molecular and Biochemical Parasitology 2, 135–50.Google Scholar
Jackson, P. R., Lawrie, J. M., Stiteler, J. M., Hawkins, D. N., Wohlhieter, J. A. & Rowton, E. D. (1986). Detection and characterization of Leishmania species and strains from mammals and vectors by hybridisation and restriction endonuclease digestion of kinetoplast DNA. Veterinary Parasitology 20, 195215.CrossRefGoogle ScholarPubMed
Kimmel, B. E., ole-Moiyoi, O. K. & Young, J. R. (1987). Ingi, a 5.2-k dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINES. Molecular and Cellular Biology 7, 1465–75.Google Scholar
Langer, P. R., Waldbop, A. A. & Ward, D. (1981). Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic affinity probes. Proceedings of the National Academy of Sciences, USA 78, 6633–7.Google Scholar
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Leary, J. J., Brigati, D. J. & Ward, D. C. (1983). Rapid and sensitive colorimetric method for visualising biotin-labeled DNA probes hybridised to DNA or RNA immobilized on nitrocellulose: bio-blots. Proceedings of the National Academy of Sciences, USA 80, 4056–9.CrossRefGoogle ScholarPubMed
Leder, P., Tiemeieb, D. & Enquist, L. (1977). EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organisms: the lambda gtWES system. Science 196, 175–7.Google Scholar
Leeflang, P., Buys, J. & Blotkamp, C. (1976). Studies on Trypanosoma vivax: infectivity and serial maintenance of natural bovine isolates in mice. International Journal for Parasitology 6, 413–17.CrossRefGoogle ScholarPubMed
Lloyd, L. L. & Johnson, W. B. (1924). The trypanosome infections in tsetse flies in Northern Nigeria and a new method of estimation. Bulletin of Entomological Research 14, 265–88.CrossRefGoogle Scholar
Lucktns, A. G. & Gray, A. R. (1979). Observations of the antigenicity and serological relationships of stocks of Trypanosoma congolense from East and West Africa. Parasitology 79, 337–47.CrossRefGoogle Scholar
Majiwa, P. A. O., Hamers, R., Van Meibvenne, N. & Matthyssens, G. (1986). Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. & Matthyssens, G. (1985 a). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. The EM BO Journal 4, 3307–13.Google ScholarPubMed
Majiwa, P. A. O., Matthyssens, G., Williams, R. O. & Hamers, R. (1985b). Cloning and analysis of Trypanosoma (Nannomonas) congolense ILNat 2.1 VSG gene. Molecular and Biochemical Parasitology 16, 97108.CrossRefGoogle ScholarPubMed
Maniatis, F., Fritsch, E. C. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press. Meinkoth, J. & Wahl, G. (1984). Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 138, 267–84.Google Scholar
Moloo, S. K. (1981). Studies on the transmission of a West African stock of Trypanosoma vivax to rabbits, rats, mice and goats by Glossina morsitans morsitans and G. m. centralis. International Journal for Parasitology 11, 191–6.CrossRefGoogle Scholar
Moloo, S. K. & Kutuza, S. B. (1984). Vectorial capacity of gamma-irradiated sterile male Glossina morsitans centralis, G. austeni and G. tachinoides for pathogenic Trypanosoma species. Insect Science and its Applications 5, 411–14.Google Scholar
Mulligan, H. W. (1970). The African Trypanosomiases, pp. 1923, 84–88. London: George Allen & Unwin.Google Scholar
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R. & Moloo, S. K. (1984). Resistance of cattle to tsetse-transmitted challenge with Trypanosoma brucei or Trypanosoma congolense after spontaneous recovery from syringe-passaged infections. Infection and Immunity 43, 735–8.CrossRefGoogle ScholarPubMed
Paindavoine, P., Pays, E., Laurent, M., Geltmeyer, Y., Le Ray, D., Mehlitz, D. & Steinert, M. (1986). The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitology 92, 3150.CrossRefGoogle ScholarPubMed
Paling, R. W., Leak, S. G. A., Katende, J., Kamunya, G. & Moloo, S. K. (1987). Epidemiology of animal trypanosomiasis on a cattle ranch in Kilifi, Kenya. Acta Tropica 44, 6782.Google ScholarPubMed
Pettersson, U. & Hyppia, T. (1985). Nucleic acid hybridisation -an alternative tool in diagnostic microbiology. Immunology Today 6, 268–72.Google Scholar
Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, P. J. (1977). Labelling DNA to high specific activity in vitro by nick-translation with polymerase I. Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Rurangirwa, F. R., Minja, S., Musoke, A. J., Nantulya, V. M., Grootenhuis, J. & Moloo, S. K. (1986). Production and evaluation of specific antisera against serum proteins of various vertebrate species for identification of bloodmeals of Glossina morsitans centralis. Acta Tropica 43, 379–89.Google Scholar
Singer, M. F. (1982). Highly repeated sequences in mammalian genomes. International Review of Cytology 76, 67112.CrossRefGoogle ScholarPubMed
Sloof, P., Bos, J. L., Konings, A. F. J. M., Menke, H. M., Borst, P., Gutteridge, W. E. & Leon, W. (1983). Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. Journal of Molecular Biology 167, 121.Google Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.Google Scholar
Vieira, J. & Messing, J. (1982). The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–68.CrossRefGoogle ScholarPubMed
Vogelstein, B. & Gillespie, D. (1979). Preparation and analytical purification of DNA from agarose. Proceedings of the National Academy of Sciences USA 76, 615–9.CrossRefGoogle ScholarPubMed
Whitelaw, D. D., Moulton, J. E., Morrison, W. I. & Murray, M. (1985). Central nervous system involvement in goats undergoing primary infections with Trypanosoma brucei and relapse infections after chemotherapy. Parasitology 90, 255–68.CrossRefGoogle Scholar
Williams, R. O., Young, J. R. & Majiwa, P. A. O. (1982). Genomic environment of T. brucei VSG genes: presence of a minichromosome. Nature, London 299, 417–21.CrossRefGoogle ScholarPubMed
Williams, R. O., Young, J. R., Majiwa, P. A. O., Doyle, J. J. & Shapiro, S. Z. (1981). Contextural genomic rearrangement of variable-antigen genes in Trypanosoma brucei. Cold Spring Harbor Symposia on Quantitative Biology 45, 945–9.Google Scholar
Wirth, D. F. & McMahon-Pratt, D. (1982). Rapid identification of Leishmania species by specific hybridisation of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Sciences, USA 79, 69997003.CrossRefGoogle ScholarPubMed