Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T07:43:53.206Z Has data issue: false hasContentIssue false

Aerobic resistance of Trichomonas vaginalis to metronidazole induced in vitro

Published online by Cambridge University Press:  06 April 2009

J. Tachezy
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czechoslovakia
J. Kulda*
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czechoslovakia
E. Tomková
Affiliation:
Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czechoslovakia
*
*Reprint requests to Dr J. Kulda.

Summary

Aerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Actor, P., Ziv, D. S. & Pagano, J. F. (1968). Resistance to metronidazole by Trichomonas foetus in hamsters infected intravaginally. Science 25, 439–40.Google Scholar
Benazet, F. & Guillaume, L. (1978). Induction of in vivo resistance of Trichomonas vaginalis to nitrimidazine. Lancet 2, 982–3.Google Scholar
Chapman, A., Cammack, R., Linstead, D. & Lloyd, D. (1985). The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. Journal of General Microbiology 131, 2141–4.Google ScholarPubMed
Čerkasov, J., Čerkasovová, A., Kulda, J. & Vilhelmová, D. (1978). Respiration of hydrogenosomes of Tritrichomonas foetus. Journal of Biological Chemistry 253, 1207–14.CrossRefGoogle ScholarPubMed
Čerkasová, A., Čerkasov, J. & Kulda, J. (1984). Metabolic differences between metronidazole resistant and susceptible strains of Tritrichomonas foetus. Molecular and Biochemical Parasitology 11, 105–18.CrossRefGoogle Scholar
Čerkasovovaá, A., Čerkasov, J. & Kulda, J. (1988). Resistance of trichomonads to metronidazole. In Trichomonads and Trichomoniasis, Acta univ. Carolianae (Prague), Biologica, Vol. 30 (ed. Kulda, J. & Čerkasov, J.), pp. 485503. Prague: Charles University Press.Google Scholar
DeCarneri, I. (1966). Variation of the sensitivity of a strain of Trichomonas vaginalis to metronidazole after culturing in the presence or absence of the drug. Proceedings of the First International Congress of Parasitology, Vol. 1, pp. 366–7. New York: Pergamon Press.CrossRefGoogle Scholar
DeCarneri, I., Achilli, G., Monti, G. & Trane, F. (1969). Induction of in-vivo resistance of Trichomonas vaginalis to metronidazole. Lancet 2, 1308–9.CrossRefGoogle Scholar
DeCarneri, I. & Trane, F. (1971). In vivo resistance to metronidazole induced on four recently isolated strains of Trichomonas vaginalis. Arztneimittel-Forschung 21, 377–81.Google Scholar
Demeš, P., Demešová, V. & Valent, M. (1985). Resistance to 5-nitroimidazoles in Trichomonas vaginalis induced in vitro. International Symposium on Trichomonads and Trichomoniasis, Prague, 1985, p. 99. Abstracts.Google Scholar
Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488–90.CrossRefGoogle ScholarPubMed
Durel, P., Couture, J. & Bassoullet, M. T. (1966). Commentaires sur deux cas de vaginite à T. vaginalis gué avec difficulté par le métronidazole. Wiadomosci Parazytologiczne 12, 422–34.Google Scholar
Honigberg, B. M. (1978). Trichomonads of importance in human medicine. In Parasitic Protozoa, Vol. 2 (ed. Kreier, J. P.), pp. 276454. New York: Academic Press.Google Scholar
Honigberg, B. M. & Livingston, M. C. (1966). In vitro sensitivity of Trichomonas vaginalis to metronidazole. Proceedings of the First International Congress of Parasitology, Vol 1, pp. 365. New York: Pergamon Press.CrossRefGoogle Scholar
Jennison, R. F., Stenton, P. & Watt, L. (1961). Laboratory studies with the systemic trichomonacide, metronidazole. Journal of Clinical Pathology 14, 431–5.CrossRefGoogle ScholarPubMed
Kabičková, H., Kulda, J., Čerkasovová, A. & Němcová, H. (1988). Metronidazole resistant Tritrichomonas foetus: activities of hydrogenosomal enzymes in course of development of anaerobic resistance. In Trichomonads and Trichomoniasis, Acta Univ. Carolinae (Prague), Biologica, Vol. 30 (ed. Kulda, J. & Čkasov, J.), pp. 513–19. Prague: Charles University Press.Google Scholar
Knox, R. J., Knight, R. C. & Edwards, D. I. (1983). Studies on the action of nitroimidazole drugs. The products of nitroimidazole reduction. Biochemical Pharmacology 32, 2149–56.CrossRefGoogle ScholarPubMed
Kulda, J., Čerkasov, J., Demeš, P. & Čerkasovová, A. (1984). Tririchomonas foetus: stable anaerobic resistance to metronidazole in vitro. Experimental Parasitology 57, 93103.CrossRefGoogle ScholarPubMed
Kulda, J., Kabíčková, H., Tachezy, J., Čerkasovavá, A. & Čerkasov, J. (1989). Metronidazole resistant trichomonads: mechanisms of in vitro developed anaerobic resistance. In Biochemistry and Molecular Biology of ‘Anaerobic’ Protozoa (ed. Lloyd, D., Coombs, G. H. & Paget, T. A.), pp. 137–60. Chur: Harwood Academic Publishers.Google Scholar
Kulda, J., Tachezy, J., Čerkasová, A. & Čerkasov, J. (1985). Trichomonas vaginalis: anaerobic resistance to metronidazole induced in vitro. International Symposium on Trichomonads and Trichomoniasis, and Trichomoniasis, Prague, 1985, p. 100. Abstracts.Google Scholar
Kulda, J., Tachezy, J. & Čerkasovová, A. (1992). In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. Journal of Protozoology (in the Press).Google Scholar
Kulda, J., Vojtěchovská, M., Tachezy, J., Demeš, P. & Kunzová, E. (1982). Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis. A case report. British Journal of Venereal Diseases 58, 394–9.Google ScholarPubMed
Lloyd, D. & Pedersen, J. Z. (1985). Metronidazole radical anion generation in vivo in Trichomonas vaginalis: oxygen quenching is enhanced in a drug-resistant strain. Journal of General Microbiology 131, 8792.Google Scholar
Lossick, J. G. (1989). Therapy of urogenital trichomoniasis. In Trichomonads Parasitic in Humans (ed. Honigberg, B. M.) pp. 324–41. New York: Springer-Verlag.Google Scholar
Lossick, J. G., Müller, M. & Gorrell, T. E. (1986). In vitro drug susceptibility and doses of metronidazole required for cure in cases of refractory vaginal trichomoniasis. Journal of Infectious Diseases 153, 948–55.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin henol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle Scholar
Meingassner, J. G. & Mieth, H. (1976). Cross-resistance of trichomonads to 5-nitroimidazole-derivatives. Experientia 32, 183–4.CrossRefGoogle ScholarPubMed
Meingassner, J. G., Mieth, H., Czok, R., Lindmark, D. G. & Müller, M. (1978). Assay conditions and the demonstration of nitroimidazole resistance in Tritrichomonas foetus. Antimicrobial Agents and Chemotherapy 13, 13.CrossRefGoogle ScholarPubMed
Meingassner, J. G. & Thurner, J. (1979). Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrobial Agents and Chemotherapy 15, 254–7.CrossRefGoogle ScholarPubMed
Moreno, S. N. J. & Docampo, R. (1985). Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis. Environmental Health Perspectives 64, 199208.CrossRefGoogle ScholarPubMed
Müller, M. (1986). Reductive activation of nitroimidazoles in anaerobic microorganisms. Biochemical Pharmacology 35, 3741.CrossRefGoogle ScholarPubMed
Müller, M. & Gorrell, T. E. (1983). Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrobial Agents and Chemotherapy 24, 667–73.CrossRefGoogle ScholarPubMed
Müller, M., Lossick, J. G. & Gorrell, T. E. (1988). In vitro susceptibility of Trichomonas vaginalis to metronidazole and treatment outcome in vaginal trichomoniasis. Sexually Transmitted Diseases 15, 1724.CrossRefGoogle ScholarPubMed
Müller, M., Meingassner, J. G., Miller, W. A. & Ledger, W. J. (1980). Three metronidazole resistant strains of Trichomonas vaginalis from the United States. American Journal of Obstetrics and Gynecology 138, 808–12.CrossRefGoogle ScholarPubMed
Nicol, C. S., McFadzean, J. G. & Squires, S. L. (1966). Trichomonas vaginalis resistance. Lancet 1, 1101.Google Scholar
Yarlett, N., Yarlett, N. C. & Lloyd, D. (1986 a). Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Molecular and Biochemical Parasitology 19, 111–6.CrossRefGoogle ScholarPubMed
Yarlett, N., Yarlett, N. C. & Lloyd, D. (1986 b). Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochemcal Pharmacology 35, 1703–8.CrossRefGoogle ScholarPubMed