Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:10:08.975Z Has data issue: false hasContentIssue false

Aggregation patterns of macroendoparasites in phylogenetically related fish hosts

Published online by Cambridge University Press:  26 May 2010

J. F. MARQUES*
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal
M. J. SANTOS
Affiliation:
Universidade do Porto, Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre, s/n, FC4, 4169-007 Porto, Portugal CIMAR – Laboratório Associado/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas, 177, 4050-123 Porto, Portugal
H. N. CABRAL
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Campo Grande, 1749-016 Lisboa, Portugal
*
*Corresponding author: Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal. Tel: +351 217 500 000 (ext. 22575). Fax: +351 217 500 207. E-mail: jimarques@fc.ul.pt

Summary

Macroparasites are generally aggregated within their hosts with infection and aggregation levels resulting from a continuous arms race between maintaining high mating probability and host mortality low for which host and environmentally related factors contribute to some extent. Here, infection and aggregation patterns of the macroendoparasites infecting the flatfish Citharus linguatula, Arnoglossus laterna, Lepidorhombus boscii, Scophthalmus rhombus and Platichthys flesus in 3 areas along the Portuguese coast were analysed. Of the 21 macroendoparasite species found only 1 infected all hosts and most were host or area exclusive. For each host-parasite system, values of the indices varied between areas and macroendoparasites were not always aggregated; in fact, some macroendoparasites were generally uniformly distributed, which can be related to specific density-dependent regulation mechanisms. No general pattern was found for infection or aggregation levels of the 3 species infecting more than 2 hosts along the Portuguese coast, i.e. Lecithochirium rufoviride, Nybelinia lingualis and Anisakis simplex s.l., suggesting that regulation mechanisms are not species specific but are locally determined, with host ecology playing a significant role.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abaunza, P., Murta, A. G., Campbell, N., Cimmaruta, R., Comesaña, A. S., Dahle, G., Gallo, E., García Santamaría, M. T., Gordo, L. S., Iversen, S. A., MacKenzie, K., Magoulas, A., Mattiucci, S., Molloy, J., Nascetti, G., Pinto, A. L., Quinta, R., Ramos, P., Ruggi, A., Sanjuan, A., Santos, A. T., Stransky, C. and Zimmermann, C. (2008). Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: integrating the results from different stock identification approaches. Fisheries Research 89, 196209. doi:10.1016/j.fishres.2007.09.022CrossRefGoogle Scholar
Anderson, R. M. and Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373398.CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1978). Regulation and stability of host–parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219247.CrossRefGoogle Scholar
Azevedo, M. F. C., Oliveira, C., Pardo, B. G., Martinez, P. and Foresti, F. (2008). Phylogenetic analysis of the order Pleuronectiformes (Teleostei) based on sequences of 12S and 16S mitochondrial genes. Genetics and Molecular Biology 31 (Suppl.), 284292. doi: 10.1590/S1415-47572008000200023CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 63, 179193.CrossRefGoogle Scholar
Durieux, E. D. H., Marques, J. F., Sasal, P., Bégout, M.-L. and Cabral, H. N. (2007). Comparison of Solea solea (L.) macroparasites between two different nursery-continental shelf systems (Charentais straits-Bay of Biscay, ICES VIIIa,b; Tagus estuary-Portuguese coast, ICES IXa). Journal of Fish Biology 70, 19211930. doi:10.1111/j.1095-8649.2007.01460.xCrossRefGoogle Scholar
Froese, R. and Pauly, D. (eds) (2009). FishBase. World Wide Web electronic publication. www.fishbase.org, version (08/2009).Google Scholar
Gubbay, S. (1995). Marine region 5: Northeast Atlantic. In A Global Representative System of Marine Protected Areas (ed. Great Barrier Reef Marine Park Authority, The World Bank and The World Conservation Union), Vol. 1. Australian Government, Australia.CrossRefGoogle Scholar
Koie, M. (2001). The life cycle of Dycheline (Cucullanellus) minutus (Nematoda: Cucullanidae). Folia Parasitologica 48, 304310.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2004). Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: the influence of phylogeny and local environmental conditions. Ecography 27, 787797.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M., Miklisova, D. and Morand, S. (2006). Host specificity, parasite community size and the relation between abundance and its variance. Evolutionary Ecology 20, 7591. doi: 10.1007/s10682-005-4731-5CrossRefGoogle Scholar
Luque, J. L., Mouillot, D. and Poulin, R. (2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671682. doi:10.1017/S0031182004005050CrossRefGoogle ScholarPubMed
Luque, J. L. and Poulin, R. (2008). Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology 72, 189204. doi:10.1111/j.1095-8649.2007.01695.xCrossRefGoogle Scholar
MacKenzie, K. and Abaunza, P. (1998). Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 4556. doi:10.1016/S0165-7836(98)00116-7CrossRefGoogle Scholar
Marques, J. F. and Cabral, H. N. (2007). Effects of sampling size on fish parasite prevalence, mean abundance and mean intensity estimates. Journal of Applied Ichthyology 23, 158162. doi: 10.1111/j.1439-0426.2006.00823.xCrossRefGoogle Scholar
Marques, J. F., Santos, M. J. and Cabral, H. N. (2006). Soleidae macroparasites along the Portuguese coast: latitudinal variation and host-parasite associations. Marine Biology 150, 285298. doi:10.1007/s00227-006-0339-8CrossRefGoogle Scholar
Marques, J. F., Santos, M. J. and Cabral, H. N. (2009). Zoogeographical patterns of flatfish (Pleuronectiformes) parasites in the north-east Atlantic and the importance of the Portuguese coast as a transitional area. Scientia Marina 73, 461471. doi: 10.3989/scimar.2009.73n3461CrossRefGoogle Scholar
Matthee, S. and Krasnov, B. R. (2009). Searching for generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology 39, 781788. doi:10.1016/j.ijpara.2008.12.003CrossRefGoogle ScholarPubMed
Morand, S. and Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialisation, phylogenetic constraint or simply epidemiology? Oikos 88, 563573. doi:10.1034/j.1600-0706.2000.880313.xCrossRefGoogle Scholar
Morand, S. and Krasnov, B. R. (2008). Why apply ecological laws to epidemiology? Trends in Parasitology 24, 304309. doi:10.1016/j.pt.2008.04.003CrossRefGoogle ScholarPubMed
Mosquera, J., Gómez-Gesteira, M. and Pérez-Villar, V. (2000). Using parasites as biological tags of fish populations: a dynamical model. Bulletin of Mathematical Biology 62, 8799. doi: 10.1006/bulm.1999.0142CrossRefGoogle ScholarPubMed
Newey, S., Shaw, D. J., Kirby, A., Montieth, P., Hudson, P. J. and Thirgood, S. J. (2005). Prevalence, intensity and aggregation of intestinal parasites in mountain hares and their potential impact on population dynamics. International Journal for Parasitology 35, 367373. doi:10.1016/j.ijpara.2004.12.003CrossRefGoogle ScholarPubMed
Pietrock, M. and Marcogliese, D. J. (2003). Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299. doi:10.1016/S1471-4922(03)00117-XCrossRefGoogle ScholarPubMed
Poulin, R. (1999). Body size vs abundance among parasite species: positive relationships? Ecography 22, 246250. doi:10.1111/j.1600-0587.1999.tb00499.xCrossRefGoogle Scholar
Poulin, R. (2006). Variation in infection parameters among populations within parasite species: Intrinsic properties versus local factors. International Journal for Parasitology 36, 877885. doi:10.1016/j.ijpara.2006.02.021CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Are there general laws in parasite ecology? Parasitology 134, 763776. doi:10.1017/S0031182006002150CrossRefGoogle ScholarPubMed
Rosà, R. and Pugliese, A. (2002). Aggregation, stability, and oscillations in different models for host-macroparasite interactions. Theoretical Population Biology 61, 319334. doi:10.1006/tpbi.2002.1575CrossRefGoogle ScholarPubMed
Santos, M. J., Saraiva, A., Cruz, C., Eiras, J. C., Hermida, M., Ventura, C. and Soares, J. P. (2009). Use of parasites as biological tags in stock identification of black scabbard fish, Aphanopus carbo Lowe, 1839 (Osteichthyes, Trichiuridae) from Portuguese waters. Scientia Marina 73 (Suppl. 2), 5562.CrossRefGoogle Scholar
Scott, M. E. (1987). Temporal changes in aggregation: a laboratory study. Parasitology 94, 583595.CrossRefGoogle ScholarPubMed
Shaw, D. J. and Dobson, A. P. (1995). Patterns of parasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111 (Suppl.), S111S133.CrossRefGoogle ScholarPubMed
Shaw, D. J., Grenfell, B. T. and Dobson, A. P. (1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117, 597610.CrossRefGoogle ScholarPubMed
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, London 189, 732735.CrossRefGoogle Scholar
Teixeira, C. M., Batista, M. I. and Cabral, H. N. (2010). Diet, growth and reproduction of four flatfishes in the Portuguese coast. Scientia Marina 74, 223233.CrossRefGoogle Scholar
Timi, J. T., Luque, J. L. and Sardella, N. H. (2005). Parasites of Cynoscion guatucupa along South American Atlantic coasts: evidence for stock discrimination. Journal of Fish Biology 67, 16031618. doi: 10.1111/j.1095-8649.2005.00867.xCrossRefGoogle Scholar
Tompkins, D. M., Dobson, A. P., Arneberg, P., Begon, M. E., Cattadori, I. M., Greenman, J. V., Heesterbeek, A. P., Hudson, P. J., Newborn, D., Pugliese, A., Rizzoli, A. P., Rosà, R., Rosso, F. and Wilson, K. (2001). Parasites and host population dynamics. In The Ecology of Wildlife Diseases (ed. Hudson, P. J.), pp. 4562. Oxford University Press, Oxford, UK.Google Scholar
Williams, H. H., MacKenzie, K. and McCarthy, A. M. (1992). Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 2, 144176.CrossRefGoogle Scholar
Zander, C. D. (2003). Four-year monitoring of parasite communities in gobiid fishes of the south-western Baltic: I. Guild and component community. Parasitology Research 90, 502511. doi: 10.1007/s00436-003-0887-5CrossRefGoogle ScholarPubMed