Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T04:07:39.754Z Has data issue: false hasContentIssue false

Alpha proteobacteria of genus Anaplasma (Rickettsiales: Anaplasmataceae): Epidemiology and characteristics of Anaplasma species related to veterinary and public health importance

Published online by Cambridge University Press:  02 March 2016

FARHAN AHMAD ATIF*
Affiliation:
Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha-40100, Pakistan
*
*Corresponding author: Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha-40100, Pakistan. E-mail: atif786@uos.edu.pk

Summary

The Anaplasma species are important globally distributed tick-transmitted bacteria of veterinary and public health importance. These pathogens, cause anaplasmosis in domestic and wild animal species including humans. Rhipicephalus, Ixodes, Dermacentor and Amblyomma genera of ticks are the important vectors of Anaplasma. Acute anaplasmosis is usually diagnosed upon blood smear examination followed by antibodies and nucleic acid detection. All age groups are susceptible but prevalence increases with age. Serological cross-reactivity is one of the important issues among Anaplasma species. They co-exist and concurrent infections occur in animals and ticks in same geographic area. These are closely related bacteria and share various common attributes which should be considered while developing vaccines and diagnostic assays. Movement of susceptible animals from non-endemic to endemic regions is the major risk factor of bovine/ovine anaplasmosis and tick-borne fever. Tetracyclines are currently available drugs for clearance of infection and treatment in humans and animals. Worldwide vaccine is not yet available. Identification, elimination of reservoirs, vector control (chemical and biological), endemic stability, habitat modification, rearing of tick resistant breeds, chemotherapy and tick vaccination are major control measures of animal anaplasmosis. Identification of reservoirs and minimizing the high-risk tick exposure activities are important control strategies for human granulocytic anaplasmosis.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdala, A. A., Pipano, E., Aguirre, D. H., Gaido, A. B., Zurbriggen, M. A., Mangold, A. J. and Guglielmone, A. A. (1990). Frozen and fresh Anaplasma centrale vaccines in the protection of cattle against Anaplasma marginale infection. Revue d Elevage et de Medecine Veterinaire des Pays Tropicaux 43, 155158.Google Scholar
Açici, M., Bölükbaş, C. S., Pekmezci, G. Z., Gürler, A. T., Umur, Ş., Karaer, K. Z., Çakmak, A., Nalbantoğlu, A. S. and Nisbet, C. (2016). Seroepidemiological survey of bovine tick-borne infections in the Black Sea Region of Turkey. Turkish Journal of Veterinary and Animal Sciences 40, 15.CrossRefGoogle Scholar
Adjou Moumouni, P. F., Aboge, G. O., Terkawi, M. A., Masatani, T., Cao, S., Kamyingkird, K., Jirapattharasate, C., Zhou, M., Wang, G., Liu, M., Iguchi, A., Vudriko, P., Ybanez, A. P., Inokuma, H., Shirafuji-Umemiya, R., Suzuki, H. and Xuan, X. (2015). Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya. Parasite & Vectors 8, 496.CrossRefGoogle ScholarPubMed
Aguero-rosenfeld, M. E., Horowitz, H. W., Wormser, G. P., Mckenna, d.f., Nowakowski, J., Munoz, J. and Dumler, J. S. (1996). Human granulocytic ehrlichiosis, a case series from a medical center in New York State. Annals of Internal Medicine 125, 904908.Google Scholar
Aguirre, E., Tesouro, M. A., Ruiz, L., Amusategui, I. and Sainz, A. (2006). Genetic characterization of Anaplasma (Ehrlichia) platys in dogs in Spain. Journal of Veterinary Medicine 53, 197200.Google Scholar
Ahmadi-hamedani, M., Khaki, Z., Rahbari, S. and Ahmadi-hamedani, M. A. (2012). Hematological profiles of goats naturally infected with Anaplasma ovis in north and northeast Iran. Comparative Clinical Pathology 21, 11791182.Google Scholar
Aktas, M., Altay, K. and Dumanli, N. (2011). Molecular detection and identification of Anaplasma and Ehrlichia species in cattle from Turkey. Ticks and Tick-borne Diseases 2, 6265.CrossRefGoogle ScholarPubMed
Aktas, M., Özübek, S., Altay, K., Ipek, N. D., Balkaya, İ., Utuk, A. E., Kırbas, A., Şimsek, S. and Dumanlı, N. (2015). Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey. Parasite & Vectors 8, 157.Google Scholar
Alberti, A., Zobba, R., Chessa, B., Addis, M. F., Sparagano, O., Pinna Parpaglia, M. L., Cubeddu, T., Pintori, G. and Pittau, M. (2005). Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Applied and Environmental Microbiology 71, 64186422.Google Scholar
Alfonso, J., Medina, R., Fazzino, F. and Caballero, H. (1996). Câmbios clinicos y hematológicos em becerros infectados com Anaplasma marginale . Acta Cientifica Venezolana 47, 5057.Google Scholar
Alfredo, A. A. N., Jonsson, N. N., Finch, T. M., Neves, L., Mollov, J. B. and Jorgensen, W. K. (2005). Serological survey of Babesia bovis and Anaplasma marginale in cattle in Tete Province, Mozambique. Tropical Animal Health and Production 37, 121131.Google Scholar
Ali, A., Ijaz, M., Durrani, A. Z., Ali, M. M., Mehmood, K. and Sabir, A. J. (2014). Prevalence and chemotherapy of anaplasmosis in clinically affected small ruminants in the River Ravi Region, Lahore. Pakistan Journal of Zoology 46, 876880.Google Scholar
Al-Khalifa, M. S., Hussain, H. S., Diab, F. M. and Khalil, G. M. (2009). Blood parasites of livestock in certain regions in Saudi Arabia. Saudi Journal of Biological Sciences 16, 6367.Google Scholar
Almazán, C., González-Álvarez, V. H., Fernández de Mera, I. G., Cabezas-Cruz, A., Rodríguez-Martínez, R. and de la Fuente, J. (2015). Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks and Tick-borne Diseases. Article in press. http://dx.doi.org/10.1016/j.ttbdis.2015.11.002.Google Scholar
Alleman, R. and Heather, W. (2008). An update on anaplasmosis in dogs. Veterinary Medicine 212220. http://veterinarymedicine.dvm360.com/update-anaplasmosis-dogs Google Scholar
Álvarez, D. O. (2015). Detection by nPCR of Anaplasma marginale and Babesia bovis in buffaloes (Bubalus bubalis) in the western region of Cuba. Revista de Salud Animal 37, 136136.Google Scholar
Ameen, K. A. H., Abdullah, B. A. and Abdul Razaq, R. A. (2012). Seroprevalence of Babesia bigemina and Anaplasma marginale in domestic animals in Erbil, Iraq. Iraqi Journal of Veterinary Science 26, 109114.Google Scholar
Andersson, M., Turcitu, M. A., Stefanache, M., Tamba, P., Barbuceanu, F. and Chitimia, L. (2013). First evidence of Anaplasma platys and Hepatozoon canis co-infection in a dog from Romania–a case report. Ticks and Tick-Borne Diseases 4, 317319.Google Scholar
Annen, K., Friedman, K., Eshoa, C., Horowitz, M., Gottschall, J. and Straus, T. (2012). Two cases of transfusion-transmitted Anaplasma phagocytophilum . American Journal of Clinical Pathology 137, 562565.Google Scholar
Antunes, S., Galindo, R. C., Almazán, C., Rudenko, N., Golovchenko, M., Grubhoffer, L., Shkap, V., do Rosário, V., de la Fuente, J. and Domingos, A. (2012). Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. International Journal of Parasitology 42, 187195.CrossRefGoogle ScholarPubMed
Arraga-Alvarado, C. M., Qurollo, B., Parra, O. C., Berrueta, M. A., Hegarty, B. C. and Breitschwerdt, E. B. (2014). Molecular Evidence of Anaplasma platys infection in two women from Venezuela. American Journal of Tropical Medicine and Hygiene 91, 11611165.Google Scholar
Arunkumar, S. (2014). A report on the incidence of anaplasma ovis infection in sheep. International Journal of Food, Agriculture and Veterinary Sciences 40, 7172.Google Scholar
Ashraf, Q. U. A., Khan, A. U., Khattak, R. M., Ali, M., Shaikh, R. S., Ali, M. and Iqbal, F. (2013). A report on the high prevalence of Anaplasma sp. in buffaloes from two provinces in Pakistan. Ticks and Tick-Borne Diseases 4, 395398.Google Scholar
Ashuma, S. A., Singla, L. D., Kaur, P., Bal, M. S., Batth, B. K. and Juyalm, P. D. (2013). Prevalence and haemato-biochemical profile of Anaplasma marginale infection in dairy animals of Punjab (India). Asian Pacific Journal of Tropical Medicine 6, 139144.Google Scholar
Atif, F. A. (2015). Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitology Research 114, 39413957.Google Scholar
Atif, F. A., Khan, M. S., Iqbal, H. J. and Roheen, T. (2012 a). Prevalence of tick-borne diseases in Punjab (Pakistan) and hematological profile of Anaplasma marginale infection in indigenous and crossbred cattle. Pakistan Journal of Science 64, 1115.Google Scholar
Atif, F. A., Khan, M. S., Khan, M. A., Ashraf, M. and Avais, M. (2012 b). Chemotherapeutic efficacy of oxytetracycline, enrofloxacin and imidocarb for the elimination of persistent Anaplasma marginale infection in naturally infected Sahiwal cattle. Pakistan Journal of Zoology 44, 449456.Google Scholar
Atif, F. A., Khan, M. S., Muhammad, F. and Ahmad, B. (2013). Sero-epidemiological study of Anaplasma marginale among cattle. Journal of Animal and Plant Sciences 23, 740744.Google Scholar
Bakken, J. S. and Dumler, J. S. (2015). Human granulocytic anaplasmosis. Infectious Disease Clinics of North America 29, 341355.Google Scholar
Bakken, J. S., Dumler, J. S., Chen, S. M., Eckman, M. R., Van Etta, L. L. and Walker, D. H. (1994). Human granulocytic ehrlichiosis in the upper Midwest United States. A new species emerging? Journ Horowitz al of the American Medical Association 272, 212218.Google Scholar
Baldridge, G. D., Scoles, G. A., Burkhardt, N. Y., Schloeder, B., Kurtti, T. J. and Munderloh, U. G. (2009). Transovarial transmission of Francisella-like endosymbionts and Anaplasma phagocytophilum variants in Dermacentor albipictus (Acari, Ixodidae). Journal of Medical Entomology 46, 625632.Google Scholar
Baráková Granquist, I., Derdáková, M., Carpi, G., Rosso, F., Collini, M., Tagliapietra, V., Ramponi, C. and Rizzoli, A. (2014). Genetic and ecologic variability among Anaplasma phagocytophilum strains, Northern Italy. Emerging Infectious Diseases 20, 10821085.CrossRefGoogle Scholar
Barbet, A. F., Palmer, G. H., Myler, P. J. and Mcguire, T. C. (1987). Characterization of an immunoprotective protein complex of Anaplasma marginale by cloning and expression of the gene coding for polypeptide Am105L. Infectious Immunology 55, 24282435.CrossRefGoogle ScholarPubMed
Barbosa da Silva, J., de Santana Castro, G. N. and Fonseca, A. H. (2014 a). Longitudinal study of risk factors for anaplasmosis and transplacental transmission in herd cattle. Semina: Ciências Agrárias, Londrina 35, 24912500.Google Scholar
Barbosa da Silva, J., Vinhote, W. M., Oliveira, C. M., André, M. R., Machado, R. Z., da Fonseca, A. H. and Barbosa, J. D. (2014 b). Molecular and serological prevalence of Anaplasma marginale in water buffaloes in northern Brazil. Ticks and Tick-borne Diseases 5, 100104.Google Scholar
Barker, E. N., Langton, D. A., Helps, C. R., Brown, G., Malik, R., Shaw, s.e. and Tasker, S. (2012). Haemoparasites of free-roaming dogs associated with several remote Aboriginal communities in Australia. BMC Veterinary Research 8, 55.Google Scholar
Belkahia, H., Ben Said, M., Alberti, A., Abdi, K., Issaoui, Z., Hattab, D., Gharbi, M. and Messadi, L. (2015 a). First molecular survey and novel genetic variants’ identification of Anaplasma marginale, A. centrale and A. bovis in cattle from Tunisia. Infection, Genetics and Evolution 34, 361371.Google Scholar
Belkahia, H., Ben Said, M., Sayahi, L., Alberti, A. and Messadi, L. (2015 b). Detection of novel strains genetically related to Anaplasma platys in Tunisian one-humped camels (Camelus dromedaries). The Journal of Infection in Developing Countries 9, 11171125.Google Scholar
Belal, S. H., Al Mahmud, A. and Ferdous, J. (2014). Prevalence of anaplasmosis in cattle in Sirajganj district of Bangladesh. Research in Agriculture, Livestock and Fisheries 1, 97103.Google Scholar
Bell-Sakyi, L., Palomar, A. M., Bradford, E. L. and Shkap, V. (2015). Propagation of the Israeli vaccine strain of Anaplasma centrale in tick cell lines. Veterinary Microbiology 179, 270276.Google Scholar
Ben Said, M., Belkahia, H., Karaoud, M., Bousrih, M., Yahiaoui, M., Daaloul-Jedidi, M. and Messadi, L. (2015). First molecular survey of Anaplasma bovis in small ruminants from Tunisia. Veterinary Microbiology 179, 322326.Google Scholar
Berger, S. (2014). Anaplasmosis, Global Status. Gideon Informatics, Inc., Los Angeles, California, USA.Google Scholar
Bilgiç, H. B., Karagenç, T., Simuunza, M., Shiels, B., Tait, A., Eren, H. and Weir, W. (2013). Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Experimental Parasitology 133, 222229.Google Scholar
Bock, R. E., de Vos, A. J. and Molloy, J. B. (2006). Tick-borne diseases of Cattle. Australian and New Zealand standard diagnostic procedures. http://www.scahls.org.au/Procedures/Documents/.../tick_borne_diseases.pdf Google Scholar
Borthakur, S. K., Deka, D. K., Bhattacharjee, K. and Sarmah, P. C. (2014). Seroprevalence of canine dirofilariosis, granulocytic anaplasmosis and lyme borreliosis of public health importance in dogs from India's North East. Veterinary World 7, 665667.CrossRefGoogle Scholar
Breitschwerdt, E. B., Hegarty, B. C. and Hancock, S. I. (1998). Doxycycline hyclate treatment of experimental canine ehrlichiosis followed by challenge inoculation with two Ehrlichia canis strains. Antimicrobial Agents and Chemotherapy 42, 362368.Google Scholar
Cabezas-Cruz, A. and de la Fuente, J. (2015). Anaplasma marginale major surface protein 1a: a marker of strain diversity with implications for control of bovine anaplasmosis. Ticks and Tick-borne Diseases 6, 205210. doi: http://dx.doi.org/10.1016/j.ttbdis.2015.03.007 Google Scholar
Cao, W. C., Zhan, L., He, J., Foley, J. E., de Vlas, S. J., Wu, X. M., Yang, H., Richardus, J. H. and Habbema, J. D. (2006). Natural Anaplasma phagocytophilum infection of ticks and rodents from a forest area of Jilin Province, China. American Journal of Tropical Medicine and Hygiene 75, 664668.Google Scholar
Cardoso, L., Gilad, M., Cortes, H. C., Nachum-Biala, Y., Lopes, A. P., Vila-Viçosa, M. J., Simões, M., Rodrigues, P. A. and Baneth, G. (2015). First report of Anaplasma platys infection in red foxes (Vulpes vulpes) and molecular detection of Ehrlichia canis and Leishmania infantum in foxes from Portugal. Parasite & Vectors 8, 144.CrossRefGoogle ScholarPubMed
Ceci, L., Iarussi, F., Greco, B., Lacinio, R., Fornelli, S. and Carelli, G. (2014). Retrospective study of haemoparasites in cattle in Southern Italy by reverse line blot hybridization. Journal of Veterinary Medical Science 76, 869875.Google Scholar
Center for Food Security and Public Health, CFSPH (2013). Ehrlichiosis and Anaplasmosis: Zoonotic Species. The Center for Food Security and Public Health, Institute for International Cooperation in Animal Biologics, College of Veterinary Medicine, Iowa State University, USA.Google Scholar
Centers for Disease Control and Prevention, CDC (2013). Statistics and epidemiology of anaplasmosis. http://www.cdc.gov/anaplasmosis/ Google Scholar
Chandrashekar, R., Mainville, C. A., Beall, M. J., O'connor, T., Eberts, M. D., Alleman, A. R., Gaunt, S. D. and Breitschwerdt, E. B. (2010). Performance of a commercially available in-clinic ELISA for the detection of antibodies against Anaplasma phagocytophilum, Ehrlichia canis, and Borrelia burgdorferi and Dirofilaria immitis antigen in dogs. American Journal of Veterinary Research 71, 14431450.CrossRefGoogle ScholarPubMed
Chang, W. L., Su, W. L. and Pan, M. J. (1997). Two-step PCR in the evaluation of antibiotic treatment for Ehrlichia platys infection. Journal of Veterinary Medical Science 59, 849851.Google Scholar
Chae, J. S., Yu, D. H., Shringi, S., Klein, T. A., Kim, H. C., Chong, S. T., Lee, I. Y. and Foley, J. (2008). Microbial pathogens in ticks, rodents and a shrew in northern Gyeonggi-do near the DMZ, Korea. Journal of Veterinary Science 9, 285293.Google Scholar
Chastagner, A., Bailly, X., Leblond, A., Pradier, S. and Vourc'h, G. (2013). Single genotype of Anaplasma phagocytophilum identified from ticks, Camargue, France. Emerging and Infectious Diseases 19, 825827.Google Scholar
Chen, S. M., Dumler, J. S., Bakken, J. S. and Walker, D. H. (1994). Identification of a granulocytic Ehrlichia species as the etiologic agent of human disease. Journal of Clinical Microbiology 32, 589595.Google Scholar
Chirayath, D., Lakshmanan, B., Pillai, U. N., Alex, P. C. and Rejitha, T. S. (2012). Anaplasma bovis infection in a cow – a case report. Journal of Veterinary and Animal Sciences 43, 8384.Google Scholar
Chung, C., Wilson, C., Bandaranayaka-Mudiyanselage, C. B., Kang, E., Adams, D. S., Kappmeyer, L. S., Knowles, D. P., McElwain, T. F., Evermann, J. F., Ueti, M. W., Scoles, G. A., Lee, S. S. and McGuire, T. C. (2014). Improved diagnostic performance of a commercial Anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5-glutathion S-transferase fusion protein as antigen. Journal of Veterinary Diagnostic Investigation 26, 6171.Google Scholar
Clark, K. L. (2012). Anaplasmaphagocytophilum in small mammals and ticks in north east Florida. Journal of Vector Ecology 37, 262268.Google Scholar
Coetzee, J. F., Apley, M. D. and Kocan, K. M. (2006). Comparison of the efficacy of enrofloxacin, imidocarb, and oxytetracycline for clearance of persistent Anaplasma marginale infections in cattle. Veterinary Therapy 7, 347360.Google Scholar
Costa, S. C., de Magalhães, V. C., de Oliveira, U. V., Carvalho, F. S., de Almeida, C. P., Machado, R. Z. and Munhoz, A. D. (2015). Transplacental transmission of bovine tick-borne pathogens: frequency, co-infections and fatal neonatal anaplasmosis in a region of enzootic stability in the northeast of Brazil. Ticks and Tick-borne Diseases. Article in press, http://dx.doi.org/10.1016/j.ttbdis.2015.11.001.Google Scholar
Courtney, J. W., Kostelnik, L. M., Zeidner, N. S. and Massung, R. F. (2004). Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi . Journal of Clinical Microbiology 42, 31643168.Google Scholar
Dahmani, M., Davoust, B., Benterki, M. S., Fenollar, F., Raoult, D. and Mediannikov, O. (2015). Development of a new PCR-based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comparative Immunology, Microbiology & Infectious Diseases 39, 3945.Google Scholar
Davidson, W. R. and Goff, W. L. (2001). Anaplasmosis. In Order Rickettsiales. Infectious Diseases of Wild Mammals (ed. Williams, E. S. and Barker, I. K.), pp. 455466. Iowa State University Press, Ames, IA, USA.Google Scholar
da Silva, VNRB (2008). Surveillance of vector-borne diseases in cattle with special emphasis on bluetongue disease in Switzerland . Ph.D dissertation. Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, Switzerland.Google Scholar
da Silva, A. S., Lopes, L. S., Diaz, J. D., Tonin, A. A., Stefani, L. M. and Araújo, D. N. (2013). Lice outbreak in buffaloes, evidence of Anaplasma marginale transmission by sucking lice Haematopinus tuberculatus . Journal of Parasitology 99, 546547.Google Scholar
da Silva, J.B. and Da Fonseca, A. H. (2014). Risk factors for anaplasmosis in dairy cows during the peripartum. Tropical Animal Health and Production 46, 461465.Google Scholar
da Silva, J. B., da Fonseca, A. H. and Barbosa, J. D. (2015). Molecular characterization of Anaplasma marginale in ticks naturally feeding on buffaloes. Infection, Genetics and Evolution 35, 3841.CrossRefGoogle ScholarPubMed
da Silva, J. B., André, M. R. and Machado, R. Z. (2016). Low genetic diversity of Anaplasma marginale in calves in an endemic area for bovine anaplasmosis in the state of São Paulo, Brazil. Ticks and Tick-borne Diseases 7, 2025.Google Scholar
Derdáková, M., Štefanèíková, A., Špitalská, E., Taragel'ová, V., Košt’álová, T., Hrkl'ová, G., Schánilec, P., Majláthová, V., Várady, M. and Peťko, B. (2011). Emergence and genetic variabilityof Anaplasma species in small ruminants and ticks from Central Europe. Veterinary Microbiology 153, 293298.Google Scholar
de Caprariis, D., Dantas-Torres, F., Capelli, G., Mencke, N., Stanneck, D., Breitschwerdt, E. B. and Otranto, D. (2011). Evolution of clinical, haematological and biochemical findings in young dogs naturally infected by vector-borne pathogens. Veterinary Microbiology 149, 206212.Google Scholar
de la Fuente, J., Bussche, R. D. and Kocan, K. M. (2001). Molecular phylogeny and biogeography of North American isolates of Anaplasma marginale (Rickettsiaceae, Ehrlichieae). Veterinary Parasitology 97, 6576.Google Scholar
de la Fuente, J., Naranjo, V., Ruiz-Fons, F., Hofle, U., Fernandez De Mera, I. G., Villanua, D., Almazán, C., Torina, A., Caracappa, S., Kocan, K. M. and Gortázar, C. (2005). Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in central Spain. Vector Borne and Zoonotic Diseasese 5, 390401.Google Scholar
de la Fuente, J., Atkinson, M. W., Hogg, J. T., Miller, D. S., Naranjo, V., Almazán, C., Anderson, N. and Kocan, K. M. (2006 a). Genetic characterization of Anaplasma ovis strains from bighorn sheep in Montana. Journal of Wildlife Diseases 42, 381385.Google Scholar
de la Fuente, J., Torina, A., Naranjo, V., Nicosia, S., Alongi, A., LaMantia, F. and Kocan, K. M. (2006 b). Molecular characterization of Anaplasma platys strains from dogs in Sicily, Italy. BMC Veterinary Research 2, 24.Google Scholar
de la Fuente, J., Almazán, C., Blouin, E. F., Naranjo, V. and Kocan, K. M. (2006 c). Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitology Research 100, 8591.Google Scholar
de la Fuente, J., Atkinson, M. W., Naranjo, V., Fernandez, D. E., Mera, I. G., Mangold, A. J., Keating, K. A. and Kocan, K. M. (2007). Sequence analysis of the msp4 gene of Anaplasma ovis strains. Veterinary Microbiology 119, 375381.CrossRefGoogle ScholarPubMed
de la Fuente, J., Ruiz-Fons, F., Naranjo, V., Torina, A., Rodríguez, O. and Gortázar, C. (2008). Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. Research in Veterinary Science 84, 382386.CrossRefGoogle ScholarPubMed
de la Fuente, J., Moreno-C.I.D., J. A., Canales, M., Villar, M., de la Lastra, J. M., Kocan, K. M., Galindo, R. C., Almazán, C. and Blouin, E. F. (2011). Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Veterinary Parasitology 181, 1722.Google Scholar
de la Fuente, J., Moreno-CID, J. A., Galindo, R. C., Almazan, C., Kocan, K. M., Merino, O., Perez de la Lastra, J. M., Estrada-Peña, A. and Blouin, E. F. (2013). Subolesin/Akirin vaccines for the control of arthropod vectors and vector borne pathogens. Transboundary and Emerging Diseases 60, 172178.Google Scholar
de Tommasi, A. S., Baneth, G., Breitschwerdt, E. B., Stanneck, D., Dantas-Torres, F., Otranto, D. and de Caprariis, D. (2014). Anaplasma platys in bone marrow megakaryocytes of young dogs. Journal of Clinical Microbiology 52, 22312234.Google Scholar
de Waal, D. T. (2000) Anaplasmosis control and diagnosis in South Africa. Annals New York Academy of Sciences 916, 474483.Google Scholar
Dhand, A., Nadelman, R. B., Aguero-Rosenfeld, M., Haddad, F. A., Stokes, D. P. and Horowitz, H. W. (2007). Human granulocytic anaplasmosis during pregnancy, case series and literature review. Clinical Infectious Diseases 45, 589593.CrossRefGoogle ScholarPubMed
Djiba, M. L., Mediannikov, O., Mbengue, M., Thiongane, Y., Molez, J. F., Seck, M. T., Fenollar, F., Raoult, D. and Ndiaye, M. (2013). Survey of Anaplasmataceae bacteria in sheep from Senegal. Tropical Animal Health and Production 45, 15571561.Google Scholar
Doan, H. T., Noh, J. H., Choe, s.e., Yoo, M. S., Kim, Y. H., Reddy, K. E., Quyen, D. V., Nguyen, L. T., Nguyen, T. T., Kweon, C. H., Jung, S. C., Chang, K. Y. and Kang, S. W. (2013). Molecular detection and phylogenetic analysis of Anaplasma bovis from Haemaphysalis longicornis feeding on grazing cattle in Korea. Veterinary Parasitology 196, 478481.Google Scholar
Donatien, A. and Lestoquard, F. (1936). Rickettsia bovis, nouvelle espece pathogene pour le boeuf. Bulletin de la Société de pathologie exotique 29, 10571061.Google Scholar
Dondi, F., Russo, S., Agnoli, C., Mengoli, N., Balboni, A., Alberti, A. and Battilani, M. (2014). Clinicopathological and molecular findings in a case of canine Anaplasma phagocytophilum infection in Northern Italy. The Scientific World Journal. http://dx.doi.org/10.1155/2014/810587 Google Scholar
Drazenovich, N. L., Brown, R. N. and Foley, J. E. (2006). Use of real-time quantitative PCR targeting the msp2 protein gene to identify cryptic Anaplasma phagocytophilum infections in wildlife and domestic animals. Vector Borne and Zoonotic Diseases 6, 8390.CrossRefGoogle ScholarPubMed
Dumitrache, M. O., Matei, I. A., Ionică, A. M., Kalmár, Z., D'Amico, G., Sikó-Barabási, S., Ionescu, D. T., Gherman, C. M. and Mihalca, A. D. (2015). Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato genospecies in red foxes (Vulpes vulpes) from Romania. Parasite & Vectors 8, 514.CrossRefGoogle ScholarPubMed
Dumler, J. S., Barbet, A. F., Bekker, C. P. and Dasch, G. A., Palmer, H. H., Ray, S. C., Rikihisa, Y., and Rurangirwa, F. R. (2001). Recognition of genera in the families Rickettsiaceae and Anaplasmataceae in order Rickesttsiales, unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia description of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila . International Journal of Systemic and Evolutionary Microbiology 51, 21452165.CrossRefGoogle Scholar
Dyachenko, V., Pantchev, N., Balzer, H. J., Meyersen, A. and Straubinger, R. K. (2012). First case of Anaplasma platys infection in a dog from Croatia. Parasite & Vectors 5, 49.Google Scholar
Ebani, V. V., Verin, R., Fratini, F., Poli, A. and Cerri, D. (2011). Molecular survey of Anaplasma phagocytophilum and Ehrlichia canis in red foxes (Vulpes vulpes) from central Italy. Journal of Wildlife Diseases 47, 699703.CrossRefGoogle ScholarPubMed
El-Ashker, M., Hotzel, H., Gwida, M., El-Beskawy, M., Silaghi, C. and Tomaso, H. (2015). Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray. Veterinary Parasitology 207, 329334.CrossRefGoogle Scholar
Ewing, S. A., Panciera, R. J., Kocan, K. M., Ge, N. L., Welch, R. D., Olson, R. W., Barker, R. W. and Rice, L. E. (1997). A winter outbreak of anaplasmosis in a nonendemic area of Oklahoma: a possible role for Dermacentor albipictus. Journal of Veterinary Diagnostic Investigation 9, 206208.Google Scholar
Eygelaar, D., Jori, F., Mokopasetso, M., Sibeko, K. P., Collins, N. E., Vorster, I., Troskie, M. and Oosthuizen, M. C. (2015). Tick-borne haemoparasites in African buffalo (Syncerus caffer) from two wildlife areas in Northern Botswana. Parasite & Vectors 8, 26.Google Scholar
FDA–US Food and Drug Administration (2009). Animal drugs @ FDA–FDA approved animal drug products. http://www.accessdata.fda.gov/scripts/animaldrugsatfda Google Scholar
Filia, G., Mahajan, V., Bal, M. S., Leishangthem, G. D. and Singh, A. (2015). Seroprevalence of babesiosis and anaplasmosis in apparently healthy large ruminants of Punjab, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 85, 885888.Google Scholar
Foggie, A. (1951). Studies on the infectious agent of tick-borne fever in sheep. Journal of Pathology and Bacteriology 63, 115.Google Scholar
Foley, J. E., Barlough, J. E., Kimsey, R. B., Madigan, J. E., Derock, E. and Poland, A. (1998). Ehrlichia spp. in cervids from California. Journal of Wildlife Diseases 34, 731737.Google Scholar
Foongladda, S., Inthawong, D., Kositanont, U. and Gaywee, J. (2011). Rickettsia, Ehrlichia, Anaplasma, and Bartonella in ticks and fleas from dogs and cats in Bangkok. Vector Borne and Zoonotic Diseases. 10, 13351341.Google Scholar
Friedhoff, K. T. (1997). Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. Parasitologia 39, 99109.Google Scholar
Gabriel, M. W., Brown, R. N., Foley, J. E., Higley, J. M. and Botzler, R. G. (2009). Ecology of Anaplasma phagocytophilum infection in gray foxes (Urocyon cinereoargenteus) in northwestern California. Journal of Wildlife Diseases 45, 344354.Google Scholar
García-Pérez, A. L., Oporto, B., Espí, A., Del Cerro, A., Barral, M., Povedano, I., Barandika, J. F. and Hurtado, A. (2015). Anaplasmataceae in wild ungulates and carnivores in northern Spain. Ticks and Tick-borne Diseases. Accepted proof. http://dx.doi.org/10.1016/j.ttbdis.2015.10.019.Google Scholar
Gaunt, S., Beall, M., Stillman, B., Lorentzen, L., Diniz, P. and Chandrashekar, R. (2010). Experimental infection and co-infection of dogs with Anaplasma platys and Ehrlichia canis, hematologic, serologic and molecular findings. Parasite & Vectors 3, 33.Google Scholar
Gharbi, M., Omri, H., Jedidi, M., Zorii, S. and Darghouth, M. A. (2015). Epidemiological study of sheep anaplasmosis (Anaplasma ovis infection) in Kairouan, Central Tunisia. Journal of Advances in Parasitology 2, 3034.Google Scholar
Ghosh, S., Azhahianambia, P. and Yadav, M. P. (2007). Upcoming and future strategies of tick control, a review. Journal of Vector Borne Diseases 44, 7989.Google Scholar
Giadinis, N. D., Katsoulos, P. D., Chochlakis, D., Tselentis, Y., Ntais, P., Lafi, S. Q., Karatzias, H. and Psaroulaki, A. (2015). Serological investigation for West Nile virus, Anaplasma ovis and Leishmania infantum in Greek cattle. Veterinaria Italiana 51, 205209.Google Scholar
Glaze, M. B., Gaunt, S. D. and Babin, S. S. (1986). Uveitis associated with Ehrlichia platys infection in a dog. Journal of American Veterinary Medical Association 189, 916917.Google Scholar
Goethert, H. K., and Telford, S. R. III (2003 a). Enzootic transmission of the agent of human granulocytic ehrlichiosis among cotton tail rabbits. American Jouranal of Tropical Medicne and Hygiene 68, 633637.Google Scholar
Goethert, H. K. and Telford, S. R. III (2003 b). Enzootic transmission of Anaplasma bovis in Nuntucket Cottontial Rabbits. Journal of Clinical Microbiology 41, 7443747.Google Scholar
Goodman, J. L., Nelson, C., Vitale, B., Madigan, J. E., Dumler, J. S., Kurtti, T. J. and Munderloh, U. G. (1996). Direct cultivation of the causative agent of human granulocytic ehrlichiosis. New England Journal of Medicine 334, 209215.Google Scholar
Gordon, W. S., Brownlee, A., Wilson, D. R. and Macleod, J. (1932). Tick-borne fever (a hitherto undescribed disease of sheep). Journal of Comparative Pathology and Therapeutics 45, 301307.Google Scholar
Götsch, S., Leschnik, M., Duscher, G., Burgstaller, J. P., Wille-Piazzai, W. and Joachim, A. (2009). Ticks and haemoparasites of dogs from Praia, Cape Verde. Veterinary Parasitology 166, 171174.Google Scholar
Glatz, M., Müllegger, R. R., Maurer, F., Fingerle, V., Achermann, Y., Wilske, B. and Bloemberg, G. V. (2014). Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks and Tick-borne Diseases 5, 139144.Google Scholar
Grab, D. J., Nyarko, E., Barat, N. C., Nikolskaia, O. V. and Dumler, J. S. (2007). Anaplasma phagocytophilum-Borrelia burgdorferi coinfection enhances chemokine,cytokine, and matrix metalloprotease expression by human brain microvascular endothelial cells. Clinical Vaccine and Immunology 14, 14201424.Google Scholar
Graf, J. F., Gogolewski, R., Leach-BING, N., Sabatini, G. A., Molento, M. B., Bordin, E. L. and Arantes, G. J. (2004). Tick control, an industry point of view. Parasitology 129, S427S442.Google Scholar
Gralen, B. (2009). Tick-borne diseases in Tajikistan – anaplasmosis, babesiosis and theileriosis. http://epsilon.slu.se Google Scholar
Granquist, E. G., Aleksandersen, M., Bergstrom, K., Dumler, S. J., Torsteinbo, W. O. and Stuen, S. (2010 a). A morphological and molecular study of Anaplasma phagocytophilum transmission events at the time of Ixodes ricinus tick bite. Acta Veterinaria Scandinavica 52, 43.Google Scholar
Granquist, E. G., Stuen, S., Crosby, L., Lundgren, A. M., Alleman, A. R. and Barbet, A. F. (2010 b). Variant-specific and diminishing immune responses towards the highly variable MSP2 (P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Veterinary Immunology and Immunopathology 133, 117124.Google Scholar
Grøva, L., Olesen, I., Steinshamn, H. and Stuen, S. (2011). Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth. Acta Veterinaria. Scandinavica 53, 30.Google Scholar
Guglielmone, A. A. (1995). Epidemiology of babesiosis and anaplasmosis in South and Central America. Veterinary Parasitology 57, 109119.Google Scholar
Haider, M. J. (1991). Hematologic examination of cattle in Pakistan during haemoparasitic infections and chemoprophylactic activity of imidocarb, diminazene and oxytetracycline against babesiosis . Ph.D thesis. pp. 199. Department of Zoology, University of Karachi, Pakistan.Google Scholar
Haigh, J. C., Gerwing, V., Erdenebaatar, J. and Hill, J. E. (2008). A novel clinical syndrome and detection of Anaplasma ovis in Mongolian reindeer (Rangifer tarandus). Journal of Wildlife Diseases 44, 569577.Google Scholar
Hairgrove, T., Schroeder, M. E., Budke, C. M., Rodgers, S., Chung, C., Ueti, M. W. and Bounpheng, M. A. (2015). Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle. Preventive Veterinary Medicine 119, 19.Google Scholar
Hajdǔsek, O., Síma, R., Ayllón, N., Jalovecká, M., Perner, J., de la Fuente, J. and Kopáček, P. (2013). Interaction of the tick immune system with transmitted pathogens. Frontiers in Cellular and Infection Microbiology 3, 26.Google Scholar
Hansen, M. G., Christoffersen, M., Thuesen, L. R., Petersen, M. R. and Bojesen, A. M. (2010). Seroprevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Danish horses. Acta Veterinaria Scandinavica. 52, 3.Google Scholar
Hapunik, J., Vichova, B., Karbowiak, G., Wita, I., Bogdaszewski, M. and Pet'ko, B. (2011). Wild and farm breeding cervids infections with Anaplasma phagocytophilum . Annals of Agricultural and Environmental Medicine 18, 7377.Google Scholar
Harrison, A., Bown, K. J. and Horak, I. G. (2011). Detection of Anaplasma bovis in an undescribed tick species collected from the eastern rock sengi Elephantulus myurus . Journal of Parasitology 97, 10121016.CrossRefGoogle Scholar
Harrus, S., Aroch, I., Lavy, E. and Bark, H. (1997). Clinical manifestations of infectious canine cyclic thrombocytopenia. Veterinary Record 141, 247250.Google Scholar
Harrus, S., Waner, T., Aizenberg, I. and Bark, H. (1998). Therapeutic effect of doxycycline in experimental subclinical canine monocytic ehrlichiosis, evaluation of a 6-week course. Journal of Clinical Microbiology 36, 21402142.Google Scholar
Harrus, S., Perlman-Avrahami, A., Mumcuoglu, K. Y., Morick, D., Eyal, O. and Baneth, G. (2011). Molecular detection of Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clinical Microbiology and Infection 17, 459463.Google Scholar
Härtwig, V., von Loewenich, F. D., Schulze, C., Straubinger, R. K., Daugschies, A. and Dyachenko, V. (2014). Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Ticks and Tick-borne Diseases 5, 277280.Google Scholar
Harvey, J. W. (2006). Thrombocytotrophic anaplasmosis (A. platys [E. platys] infection). In Infectious Diseases of the Dog and Cat, 3rd Edn. (ed. Greene, C. G.), pp. 229231. Saunders Elsevier, St. Louis.Google Scholar
Harvey, J. W., Simpson, C. F. and Gaskin, J. M. (1978). Cyclic thrombocytopenia induced by a Rickettsia-like agent in dogs. Journal of Infectious Diseases 137, 182188.Google Scholar
Hegarty, B. C., Qurollo, B. A., Thomas, B., Park, K., Chandrashekar, R., Beall, M. J., Thatcher, B. and Breitschwerdt, E. B. (2015). Serological and molecular analysis of feline vector-borne anaplasmosis and ehrlichiosis using species-specific peptides and PCR. Parasite & Vectors. 8, 320.Google Scholar
Henn, J. B., Gabriel, M. W., Kasten, R. W., Brown, R. N., Theis, J. H., Foley, J. E. and Chomel, B. B. (2007). Gray Foxes (Urocyon cinereoargenteus) as a potential reservoir of a Bartonella clarridgeiae-like bacterium and domestic dogs as part of a sentinel system for surveillance of zoonotic arthropod-borne pathogens in northern California. Journal of Clinical Microbiology 45, 24112418.Google Scholar
Henniger, T., Henniger, P., Grossmann, T., Distl, O., Ganter, M. and von Loewenich, F. D. (2013). Congenital infection with Anaplasma phagocytophilum in a calf in northern Germany. Acta Veterinaria Scandinavica 55, 38.Google Scholar
Hii, S. F., Traub, R. J., Thompson, M. F., Henning, J., O'Leary, C. A., Burleigh, A., McMahon, S., Rees, R. L. and Kopp, S. R. (2015). Canine tick-borne pathogens and associated risk factors in dogs presenting with and without clinical signs consistent with tick-borne diseases in northern Australia. Australian Veterinary Journal 93, 5866.Google Scholar
Hofmann-Lehmann, R., Meli, M. L., Dreher, U. M., Gönczi, E., Deplazes, P., Braun, U., Engels, M., Schüpbach, J., Jörger, K., Thoma, R., Griot, C., Stärk, K. D., Willi, B., Schmidt, J., Kocan, K. M. and Lutz, H. (2004). Concurrent infections with vector-borne pathogens associated with fatal hemolytic anemia in a cattle herd in Switzerland. Journal of Clinical Microbiology 42, 37753780.Google Scholar
Holden, K., Boothby, J. T., Anand, S. and Massung, R. F. (2003). Detection of Borrelia burgdorferi, Ehrlichia chaffeensis, and Anaplasma phagocytophilum in ticks (Acari, Ixodidae) from a coastal region of California. Journal of Medical Entomology 40, 534539.Google Scholar
Hornok, S., Elek, V., de la Fuente, J., Naranjo, V., Farkas, R., Majoros, G. and Földvári, G. (2007). First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. Veterinary Microbiology 122, 316322.Google Scholar
Hornok, S., de la Fuente, J., Biro, N., Fernandez, D. E., Mera, I. G., Meili, M. L., Elek, V., Gönczi, E., Meili, T., Tanczos, B., Farkas, R., Lutz, H. and Hofmann-Lehmann, R. (2011). First molecular evidence of Anaplasma ovis and Rickettsia spp. in keds (Diptera, Hippoboscidae) of sheep and wild ruminants. Vector Borne and Zoonotic Diseases 11, 13191321.Google Scholar
Hornok, S., Micsutka, A., Fernández de Mera, I. G., Meli, M. L., Gönczi, E., Tánczos, B., Mangold, A. J., Farkas, R., Lutz, H., Hofmann-Lehmann, R. and de la Fuente, J. (2012). Fatal bovine anaplasmosis in a herd with new genotypes of Anaplasma marginale, A. ovis and concurrent haemoplasmosis. Research in Veterinary Science 92, 3035.Google Scholar
Horowitz, H. W., Kilchevsky, E., Haber, S., Aguero-Rosenfeldt, M., Kranwinkel, R., James, E. K., Wong, S. J., Chu, F., Liveris, D. and Schwartz, I. (1998). Perinatal transmission of the agent of human granulocytic ehrlichiosis. New England Journal of Medicine 339, 375378.Google Scholar
Huang, H., Unver, A., Perez, M. J., Orellana, N. G. and Rikihisa, Y. (2005). Prevalence and molecular analysis of Anaplasma platys in dogs in Lara, Venezuela. Brazilian Journal of Microbiology 36, 211216.Google Scholar
Hulínská, D., Langøová, K., Pejèoch, M. and Pavlásek, I. (2004). Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS 112, 239247.Google Scholar
Hwang, J., Oh, D. H., Lee, H. and Chun, M. S. (2015). Anaplasma sp. and hemoplasma infection in leopard cats (Prionailurus bengalensis euptilurus) from Korea. Journal of Veterinary Science 16, 385388.Google Scholar
Jain, N. C. (1993). Essentials of Veterinary Hematology, 1st Edn. Lea & Febiger Publication, Philadelphia, USA.Google Scholar
Jalali, S. M., Khaki, Z., Kazemi, B., Bandehpour, M., Rahbari, S., Jalali, M. R. and Yasini, S. P. (2013). Molecular detection and identification of Anaplasma species in sheep from Ahvaz, Iran. Iranian Journal of Veterinary Research 14, 5060.Google Scholar
Jiang, J. F., Jiang, B. G., Yu, J. H., Zhang, W. Y., Gao, H. W., Zhan, L., Sun, Y., Zhang, X. A., Zhang, P. H., Liu, W., Wu, X. M., Xu, R. M. and Cao, W. C. (2011). Anaplasma phagocytophilum infection in ticks, China-Russia border. Emerging Infectious Diseases 17, 932934.Google Scholar
Jilintai, , Seino, N., Hayakawa, D., Suzuki, M., Hata, H., Kondo, S., Matsumoto, K., Yokoyama, N. and Inokuma, H. (2009). Molecular survey for Anaplasma bovis and Anaplasma phagocytophilum infection in cattle in pasture land where sika deer appear in Hokkaido, Japan. Japanese Journal of Infectious Diseases 62, 7375.Google Scholar
Johnson, R. C., Kodner, C., Jarnefeld, J., Eck, D. K. and Xu, Y. (2011). Agents of human anaplasmosis and Lyme disease at Camp Ripley, Minnesota. Vector Borne and Zoonotic Diseases. 11, 15291534.Google Scholar
Jonsson, N. N., Mayer, D. G., Matschoss, A. L., Green, P. E. and Ansell, J. (1998). Production effects of cattle tick (Boophilus microplus) infestation of high yielding dairy cows. Veterinary Parasitology 78, 6577.Google Scholar
Jorgensen, W. K., Weilgama, D. J., Navaratne, M. and Dalgliesh, R. J. (1992). Prevalence of Babesia bovis and Anaplasma marginale at selected localities in Sri Lanka. Tropical Animal Health and Production 24, 914.Google Scholar
Jaswal, H., Bal, M. S., Singla, L. D., Gupta, K. and Brar, A. P. (2013). Pathological observations on clinical Anaplasma marginale infection in cattle. Journal of Parasitic Diseases 39, 495498.Google Scholar
Kang, J. G., Ko, S., Kim, Y. J., Yang, H. J., Lee, H., Shin, N. S., Choi, K. S. and Chae, J. S. (2011). New genetic variants of Anaplasma phagocytophilum and Anaplasma bovis from Korean water deer (Hydropotes inermis argyropus). Vector Borne and Zoonotic Diseases 11, 929938.Google Scholar
Kang, J. G., Kim, H. C., Choi, C. Y., Nam, H. Y., Chae, H. Y., Chong, S. T., Klein, T. A., Ko, S. and Chae, J. S. (2013). Molecular detection of Anaplasma, Bartonella, and Borrelia species in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector Borne and Zoonotic Diseases 13, 215225.Google Scholar
Kawahara, M., Rikihisa, Y., Lin, Q., Isogo, E., Tahara, K., Itagaki, A., Hiramitsu, Y. and Tajima, T. (2006). Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and novel Ehrlichia sp. in wild deer and ticks on two Major Islands in Japan. Applied and Environmental Microbiology 72, 11021109.Google Scholar
Kelly, P. J., Xu, C., Lucas, H., Loftis, A., Abete, J., Zeoli, F., Stevens, A., Jaegersen, K., Ackerson, K., Gessner, A., Kaltenboeck, B. and Wang, C. (2013). Ehrlichiosis, babesiosis, anaplasmosis and hepatozoonosis in dogs from St. Kitts, West Indies. PLoS ONE 8, e53450.Google Scholar
Keysary, A., Massung, R. F., Inbar, M., Wallach, A. D., Shanas, U., Mumcuoglu, K. Y. and Waner, T. (2007). Molecular evidence for Anaplasma phagocytophilum in Israel. Emerging and Infectious Diseases 13, 14111412.Google Scholar
Kiilerich, A. M., Christensen, H. and Thamsborg, S. M. (2009). Anaplasma phagocytophilum in Danish sheep: confirmation by DNA sequencing. Acta Veterinaria Scandinavica 51, 55.Google Scholar
Khan, A., Khan, M. R., Tufail, M., Saleem, G. and Masood, S. (2015). Pathogenesis of anaplasmosis in Bulkhi sheep and their confirmation with polymerase chain reaction. Scholar's Advances in Animal and Veterinary Research 2, 107114.Google Scholar
Khatat, S. H., Defauw, P., Marynissen, S., Van de Maele, I., van Dongen, A. and Daminet, S. (2015). Exposure to Anaplasma phagocytophilum in two dogs in Belgium. Vlaams Diergeneeskundig Tijdschrift 84, 3946.Google Scholar
Kivaria, F. M. (2006). Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Tropical Animal Health and Production 38, 291299.Google Scholar
Kivaria, F. M., Kapaga, A. M., Mbassa, G. K., Mtui, P. F. and Wani, R. J. (2012). Epidemiological perspectives of ticks and tick-borne diseases in South Sudan: cross-sectional survey results. Onderstepoort Journal of Veterinary Research 79, 110.Google Scholar
Klabi, I. (2011). Suivi épidémio-clinique de l'infection par Anaplasma ovis dans un troupeau d'ovins du secteur organize (complexe OTD El-Alem, Kairouan) . Thesis of Veterinary Medicine. National Veterinary School of Sidi Thabet, Tunisia, pp. 36.Google Scholar
Kocan, K. M. (1994). Anaplasmosis in Oklahoma and the South Central United States. In Proceedings of the 98th Annual Meeting of the United States Animal Health Association 98, 216222.Google Scholar
Kocan, K. M., Goff, W. L., Stiller, D., Claypool, P. L., Edwards, W., Ewing, S. A., Hair, J. A. and Barron, S. J. (1992 a). Persistence of Anaplasma marginale (Rickettsiales, Anaplasmataceae) in male Dermacentor andersoni (Acari, Ixodidae) transferred successively from infected to susceptible cattle. Journal of Medical Entomology 29, 657668.Google Scholar
Kocan, K. M., Stiller, D., Goff, W. L., Claypool, P. L., Edwards, W., Ewing, S. A., Mcguire, T. C., Hair, J. A. and Barron, S. J. (1992 b). Development of Anaplasma marginale in male Dermacentor andersoni transferred from infected to susceptible cattle. American Journal of Veterinary Research 5, 499507.Google Scholar
Kocan, K. M., de la Fuente, J., Guglielmone, A. A. and Melendez, R. D. (2003). Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clinical Microbiology Reviews 16, 698712.Google Scholar
Kocan, K. M., de la Fuente, J., Blouin, E. F. and Garcia-Garcia, J. C. (2004). Anaplasma marginale (Rickettsiales, Anaplasmataceae), recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 129(Suppl), S285S300.Google Scholar
Kocan, K. M., de la Fuente, J., Step, D. L., Blouin, E. F., Coetzee, J. F., Simpson, K. M., Genova, S. G. and Boileau, M. J. (2010 a). Current challenges of the management and epidemiology of bovine anaplasmosis. Bovine Practitioner 44, 93102.Google Scholar
Kocan, K. M., de la Fuente, J., Blouin, E. F., Coetzee, J. F. and Ewing, S. A. (2010 b). The natural history of Anaplasma marginale . Veterinary Parasitology 167, 95107.Google Scholar
Kontos, V. I., Papadopoulos, O. and French, T. W. (1991). Natural and experimental canine infections with a Greek strain of Ehrlichia platys . Veterinary Clinical Pathology 20, 101105.Google Scholar
Kubelová, M., Mazancová, J. and Siroký, P. (2012). Theileria, Babesia, and Anaplasma detected by PCR in ruminant herds at Bié Province, Angola. Parasite 19, 417422.Google Scholar
Kuttler, K. L. (1983). Influence of a second Anaplasma exposure on the success of the treatment to eliminate Anaplasma carrier infections in cattle. American Journal of Veterinary Research 44, 882883.Google Scholar
Kuttler, K. L. (1984). Anaplasma infections in wild and domestic ruminants, a review. Journal of Wildlife Diseases 20, 1220.Google Scholar
Kuttler, K. L. and Simpson, J. E. (1978). Relative efficacy of two oxytetracycline formulations and doxycycline in the treatment of acute anaplasmosis in splenectomized calves. American Journal of Veterinary Research 39, 347349.Google Scholar
Lobanov, V. A., Gajadhar, A. A., Al-Adhami, B. and Schwantje, H. M. (2012). Molecular study of free-ranging mule deer and white-tailed deer from British Columbia, Canada, for evidence of Anaplasma spp. and Ehrlichia spp. Transboundary and Emerging Diseases 59, 233243.Google Scholar
Labuda, M., Trimnell, A. R., Lľcková, M., Kazimírová, M., Davies, G. M., Lissina, O., Hails, R. S. and Nuttall, P. A. (2006). An antivector vaccine protects against a lethal vector-borne pathogen. PLoSPathog 2, e27.Google Scholar
Lane, R. S., Mun, J., Peribáñez, M. A. and Fedorova, N. (2010). Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California. Ticks and Tick-borne Diseases 1, 159167.Google Scholar
Lankester, M. W., Scandrett, W. B., Golsteyn-Thomas, E. J., Chilton, N. C. and Gajadhar, A. A. (2007). Experimental transmission of bovine anaplasmosis (caused by Anaplasma marginale) by means of Dermacentor variabilis and D. andersoni (Ixodidae) collected in western Canada. Canadian Journal of Veterinary Research 71, 271277.Google Scholar
Lee, S. H., Jung, B. Y. and Kwak, D. (2015). Evidence of Anaplasma spp. exposure in native Korean goats (Capra hircus coreanae). Veterinarni Medicina 60, 248252.Google Scholar
Leiby, D. A. and Gill, J. E. (2004). Transfusion-transmitted tick-borne infections: a cornucopia of threats. Transfusion Medicine Reviews 18, 293306.Google Scholar
Lepidi, H., Bunnell, J. E., Martin, M. E., Madigan, J. E., Stuen, S. and Dumler, J. S. (2000). Comparative pathology and immunohistology associated with clinical illness after Ehrlichia phagocytophila-group infections. American Journal of Tropical Medicine and Hygiene 62, 2937.Google Scholar
Leschnik, M., Kirtz, G., Virányi, Z., Wille-Piazzai, W. and Duscher, G. (2012). Acute granulocytic anaplasmosis in a captive timber wolf (Canis lupus occidentalis). Journal of Zoo and Wildlife Medicine 43, 645648.Google Scholar
Levin, M. L., Nicholson, W. L., Massung, R. F., Sumner, J. W. and Fish, D. (2002). Comparison of the reservoir competence of medium-sized mammals and Peromyscus leucopus for Anaplasma phagocytophilum in Connecticut. Vector Borne and Zoonotic Diseases 2, 125136.Google Scholar
Li, Y., Chen, Z., Liu, Z., Liu, J., Yang, J., Li, Q., Li, Y., Ren, Q., Niu, Q., Guan, G., Luo, J. and Yin, H. (2014). First report of Theileria and Anaplasma in the Mongolian gazelle. Procapra gutturosa. Parasite & Vectors 7, 614.Google Scholar
Li, Y., Chen, Z., Liu, Z., Liu, J., Yang, J., Li, Q., Li, Y., Luo, J. and Yin, H. (2015 a). Molecular survey of anaplasma and ehrlichia of red deer and sika deer in Gansu, China in 2013. Transboundary and Emerging Diseases. doi: 10.1111/tbed.12335.Google Scholar
Li, Y., Yang, J., Chen, Z., Qin, G., Li, Y., Li, Q., Liu, J., Liu, Z., Guan, G., Yin, H., Luo, J. and Zhang, L. (2015 b). Anaplasma infection of Bactrian camels (Camelus bactrianus) and ticks in Xinjiang, China. Parasite & Vectors 8, 313.Google Scholar
Lima, M. L., Soares, P. T., Ramos, C. A., Araujo, F. R., Ramos, R. A., Souza, I. I., Faustino, M. A. and Alves, L. C. (2010). Molecular detection of Anaplasma platys in a naturally-infected cat in Brazil. Brazilian Journal of Microbiology 41, 381385.Google Scholar
Liu, Z., MA, M., Wang, Z., Wang, J., Peng, Y. and Li, Y. (2012). Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Applied and Environmental Microbiology 78, 464470.Google Scholar
Logan, T. M., Kocan, K. M., Edwards, W., Hair, J. A., Claypool, P. L. and Ewing, S. A. (1987). Persistence of colonies of Anaplasma marginale in overwintering Dermacentor variabilis . American Journal of Veterinary Research 48, 661663.Google Scholar
Losos, G. J. (1986). Infectious Tropical Diseases of Domestic Animals. Longman Sicientific & Technical, Ottawa, ON, Canada, pp. 938.Google Scholar
Lovrich, S. D., Jobe, D. A., Kowalski, T. J., Policepatil, S. M. and Callister, S. M. (2011). Expansion of the Midwestern focus for human granulocytic anaplasmosis into the region surrounding LaCrosse, Wisconsin. Journal of Clinical Microbiology 49, 38553859.Google Scholar
Maggi, R. G., Mascarelli, P. E., Havenga, L. N., Naidoo, V. and Breitschwerdt, E. B. (2013). Co-infection with Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haematoparvum in a veterinarian. Parasite & Vectors 6, 103.Google Scholar
Magnarelli, L. A., Ijdo, J. W., Shermant, B. A., Bushmich, S. L., Levy, S. A. and Fikrig, E. (2002). Antibodies to granulocytic ehrlichiae in cattle from Connecticut. Journal of Medical Microbiology 51, 326331.Google Scholar
Magonigle, R. A., Renshaw, H. W., Vaughn, H. W., Stauber, E. H. and Frank, F. W. (1975). Effect of five daily treatments with oxytetracycline hydrochloride on the carrier status of bovine anaplasmosis. Journal of American Veterinary Medical Association 167, 10801083.Google Scholar
Makala, L. H., Mangani, P., Fujisaki, K. and Nagasawa, H. (2003). The current status of major tick borne diseases in Zambia. Veterinary Research 34, 2745.Google Scholar
Malaisri, P., Hirunkanokpun, S., Baimai, V., Trinachartvanit, W. and Ahantarig, A. (2015). Detection of Rickettsia and Anaplasma from hard ticks in Thailand. Journal of Vector Ecology 40, 262268.Google Scholar
Malmsten, J., Widén, D. G., Rydevik, G., Yon, L., Hutchings, M. R., Thulin, C. G., Söderquist, L., Aspan, A., Stuen, S. and Dalin, A. M. (2014). Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces). Epidemiology & Infection 142, 12051213.Google Scholar
Marcelino, I., de Almeida, A. M., Ventosa, M., Pruneau, L., Meyer, d.f., Martinez, D., Lefrançois, T., Vachiéry, N. and Coelho, A. V. (2012). Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. Journal of Proteomics 75, 42324250.Google Scholar
Melo, A. L., Witter, R., Martins, T. F., Pacheco, T. A., Alves, A. S., Chitarra, C. S., Dutra, V., Nakazato, L., Pacheco, R. C., Labruna, M. B. and Aguiar, D. M. (2015). A survey of tick-borne pathogens in dogs and their ticks in the Pantanal biome, Brazil. Medical Veterinary Entomology 30, 112116.Google Scholar
Merino, O., Antunes, S., Mosqueda, J., Moreno-Cid, J. A., de la Lastra, P. J. M., Rosario-Cruz, R., Rodríguez, S., Domingos, A. and de la Fuente, J. (2013). Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine 31, 58895896.Google Scholar
Marufu, M. C., Chimonyo, M., Dzama, K. and Mapiye, C. (2010). Seroprevalence of tick-borne diseases incommunal cattle reared on sweet and sour rangelands in a semi-arid area of South Africa. Veterinary Journal 184, 7176.Google Scholar
Mirwan, N. M. A. (2003). Prevalence of Bovine Anaplasmosis in Malaysian Farms. Course VPD 5908-Project, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia.Google Scholar
M'ghirbi, Y., Yaïch, H., Ghorbel, A. and Bouattour, A. (2012). Anaplasma phagocytophilum in horses and ticks in Tunisia. Parasite & Vectors 5, 180.Google Scholar
Mutshembele, A. M., Cabezas-Cruz, A., Mtshali, M. S., Thekisoe, O. M., Galindo, R. C. and de la Fuente, J. (2014). Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. Ticks and Tick-borne Diseases 5, 624631.Google Scholar
Nair, A. S., Ravindran, R., Lakshmanan, B., Sreekumar, C., Kumar, S. S., Raju, R., Tresamol, P. V., Vimalkumar, M. B. and Saseendranath, M. R. (2013). Bovine carriers of Anaplasma marginale and Anaplasma bovis in South India. Tropical Biomedicine 30, 105112.Google Scholar
Naranjo, V., Ruiz-Fons, F., Höfle, U., Fernández de Mera, I. G., Villanúa, D., Almazán, C., Torina, A., Caracappa, S., Kocan, K. M., Gortázar, C. and de la Fuente, J. (2006). Molecular epidemiology of human and bovine anaplasmosis in southern Europe. Annals of the New York Academy of Sciences 1078, 9599.Google Scholar
Nazifi, S., Razavi, S. M., Mansourian, M., Nikahval, B. and Moghaddam, M. (2008). Studies on correlations among parasitaemia and some hemolytic indices in two tropical diseases (theileriosis and anaplasmosis) in Fars province of Iran. Tropical Animal Health and Production 40, 4753.Google Scholar
Nieto, N. C. and Foley, J. E. (2008). Evaluation of squirrels (Rodentia: Sciuridae) as ecologically significant hosts for Anaplasma phagocytophilum in California. Journal of Medical Entomolgy 45, 763769.Google Scholar
Nieto, N. C., Foley, J. E., Bettaso, J. and Lane, R. S. (2009). Reptile infection with Anaplasma phagocytophilum, the causative agent of granulocytic anaplasmosis. Journal of Parasitology 95, 11651170.Google Scholar
Njiiri, N. E., Bronsvoort, B. M., Collins, N. E., Steyn, H. C., Troskie, M., Vorster, I., Thumbi, S. M., Sibeko, K. P., Jennings, A., Van Wyk, I. C., Mbole-Kariuki, M., Kiara, H., Poole, E. J., Hanotte, O., Coetzer, K., Oosthuizen, M. C., Woolhouse, M. and Toye, P. (2015). The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya. Veterinary Parasitology 210, 6976.Google Scholar
Ochirkhuu, N., Konnai, S., Mingala, C. N., Okagawa, T., Villanueva, M. R., Pilapil, F. M., Murata, S. and Ohashi, K. (2015). Molecular epidemiological survey and genetic analysis of vector-borne infections of cattle in Luzon Island, the Philippines. Veterinary Parasitology 212, 161167.Google Scholar
Office International Des Epizootics, OIE (2008). Bovine Anaplasmosis. Office International Des Epizootics, Terrestrial Manual, Paris, France.Google Scholar
Office International des Epizootics OIE (2015). Bovine Anaplasmosis. Office International Des Epizootics, Terrestrial Manual, Paris, France.Google Scholar
Ooshiro, M., Zakimi, S., Matsukawa, Y., Katagiri, Y. and Inokuma, H. (2008). Detection of Anaplasma bovis and Anaplasma phagocytophilum from cattle on Yonaguni Island, Okinawa, Japan. Veterinary Parasitology 154, 360364.Google Scholar
Ooshiro, M., Zakimi, S., Matsukawa, Y., Yafuso, M., Katagiri, Y. and Inokuma, H. (2009). Anaplasma marginale infection in a Japanese Black cow 13 years after eradication of Rhipicephalus (Boophilus) microplus in Okinawa, Japan. Veterinary Parasitology 160, 351355.Google Scholar
Öter, K., Çetinkaya, H., Vurusaner, C., Toparlak, M. and Ergünay, K. (2015). Molecular detection and typing of anaplasma species in small ruminants in Thrace region of Turkey. Kafkas Universitesi Veteriner Fakultesi Dergisi 22, 133138.Google Scholar
Otranto, D., Testini, G., Dantas-Torres, F., Latrofa, M. S., Diniz, P. P. V. P., Caprariis, D., LIA, R. P., Mencke, N., Stanneck, D., Capelli, G. and Breitschwerdt, E. B. (2010). Diagnosis of canine vector-borne diseases in young dogs, a longitudinal study. Journal of Clinical Microbiology 48, 33163324.Google Scholar
Øverås, J., Lund, A., Ulvund, M. J. and Waldeland, H. (1993). Tick-borne fever as a possible predisposing factor in septicaemic pasteurellosis in lambs. Veterinary Record 133, 398.Google Scholar
Overzier, E., Pfister, K., Herb, I., Mahling, M., Böck, G. Jr. and Silaghi, C. (2013). Detection of tick-borne pathogens in roe deer (Capreolus capreolus), questing ticks (Ixodes ricinus) and ticks infesting roe deer in southern Germany. Ticks and Tick Borne Diseases 4, 320328.Google Scholar
Palmer, G. H., Futse, J. E., Knowles, D. P. Jr. and Brayton, K. A. (2006). Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale . Annals of the New York Academy of the Sciences 1078, 1525.Google Scholar
Palomar, A. M., Portillo, A., Santibáñez, P., Mazuelas, D., Roncero, L., García-Álvarez, L., Santibáñez, S., Gutiérrez, Ó. and Oteo, J. A. (2015). Detection of tick-borne Anaplasma bovis, Anaplasma phagocytophilum and Anaplasma centrale in Spain. Medical and Veterinary Entomology 29, 349353.Google Scholar
Parola, P., Cornet, J. P., Sanogo, Y. O., Miller, R. S., Thien, H. V., Gonzalez, J. P., Raoult, D., Telford III, S. R. and Wongsrichanalai, C. (2003). Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and other eubacteria in ticks from the Thai-Myanmar border and Vietnam. Journal of Clinical Microbiology 41, 16001608.Google Scholar
Paulauskas, A., Radzijevskaja, J. and Rosef, O. (2012). Molecular detection and characterization Anaplasma phagocytophilum strains. Comparative Immunology, Microbiology and Infectious Diseases 35, 187195.Google Scholar
Potgieter, F. T. (1996). Epidemiology of ticks and tick-borne diseases in South Africa, future research needs and priorities. Epidemiology of ticks and tick-borne diseases in Central and Southern Africa. In Proceedings of a workshop held in 12–13 March, 1996, Harare, Zimbabwe.Google Scholar
Potgieter, F. T. and Van Rensburg, L. (1987). The persistence of colostral Anaplasma antibodies in incidence of in utero transmission of Anaplasma infections in calves under laboratory conditions. Onderstepoort Journal of Veterinary Research 54, 557560.Google Scholar
Qurollo, B. A., Balakrishnan, N., Cannon, C. Z., Maggi, R. G. and Breitschwerdt, E. B. (2014). Co-infection with Anaplasma platys, Bartonella henselae, Bartonella koehlerae and ‘Candidatus Mycoplasma haemominutum’ in a cat diagnosed with splenic plasmacytosis and multiple myeloma. Journal of Feline Medicine and Surgery 16, 713720.Google Scholar
Rahman, W. A., Fong, S., Chandrawathani, P., Nurulaini, R., Zaini, C. M. and Premalaatha, B. (2012). Comparative seroprevalences of bovine trypanosomiasis and anaplasmosis in five states of Malaysia. Tropical Biomedicine 29, 6570.Google Scholar
Ramos, R. A., Latrofa, M. S., Giannelli, A., Lacasella, V., Campbell, B. E., Dantas-Torres, F. and Otranto, D. (2014). Detection of Anaplasma platys in dogs and Rhipicephalus sanguineus group ticks by a quantitative real-time PCR. Veterinary Parasitology 205, 285288.Google Scholar
Rar, V. and Golovljova, I. (2011). Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria, pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution 11, 18421861.Google Scholar
Rar, V. A., Epikhina, T. I., Livanova, N. N., Panov, V. V., Doroschenko, E. K., Pukhovskaya, N. M., Vysochina, N. P. and Ivanov, L. I. (2011). Genetic variability of Anaplasma phagocytophilum in Ixodes persulcatus ticks and small mammals in the Asian part of Russia. Vector Borne and Zoonotic Diseases 11, 10131021.Google Scholar
Rassouli, M., Kafshdouzan, K., Zow, M. S. and Ghodrati, S. (2015). Blood smear demonstrations of Anaplasma-infected sheep in a flock. Comparative Clinical Pathology 24, 14.Google Scholar
Ravnik, U., Tozon, N., Smrdel, K. S. and Zupanc, T. A. (2011). Anaplasmosis in dogs: the relation of haematological, biochemical and clinical alterations to antibody titre and PCR confirmed infection. Veterinary Microbiology 149, 172176.Google Scholar
Razzaq, F., Khosa, T., Ahmad, S., Hussain, M., Saeed, Z., Khan, M. A., Shaikh, R. S., Ali, M. and Iqbal, F. (2015). Prevalence of Anaplasma phagocytophilum in horses from Southern Punjab (Pakistan). Tropical Biomedicine 32, 233239.Google Scholar
Reinbold, J. B. (2009). Application of real time quantitative RT-PCR for improving the diagnosis, treatment, and control of bovine anaplasmosis . An abstract of Ph.D. dissertation. Kansas State University, Manhatan, Kansas, USA.Google Scholar
Reinbold, J. B., Coetzee, J. F., Hollis, L. C., Nickell, J. S., Riegel, C., Olson, K. C. and Ganta, R. R. (2010). The efficacy of three chlortetracycline regimens in the treatment of persistent Anaplasma marginale infection. Veterinary Microbiology 145, 6975.Google Scholar
Rejmanek, D., Nieto, N. C., Barash, N. and Foley, J. E. (2011). Temporal patterns of tick-borne granulocytic anaplasmosis in California. Ticks and Tick-borne Diseases 2, 8187.Google Scholar
Renneker, S., Abdo, J., Salih, D. E., Karagenç, T., Bilgiç, H., Torina, A., Oliva, A. G., Campos, J., Kullmann, B., Ahmed, J. and Seitzer, U. (2013). Can Anaplasma ovis in small ruminants be neglected any longer? Transboundary and Emerging Diseases 60(Suppl. 2), 105112.Google Scholar
Reppert, E., Galindo, R. C., Breshears, M. A. and Kocan, K. M., Blouin, E. F. and de la Fuente, J. (2013). Demonstration of transplacental transmission of a human isolate of Anaplasma phagocytophilum in an experimentally infected sheep. Transboundary and Emerging Diseases 60, 9396.Google Scholar
Richey, E. J., and Palmer, G. H. (1990). Bovine anaplasmosis. Compendium on Continuing Education for the Practising Veterinarian. 12, 16611668.Google Scholar
Rikihisa, Y. (2011). Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum . Clinical Microbiology Reviews 24, 469489.Google Scholar
Riond, B., Meli, M. L., Braun, U., Deplazes, P., Joerger, K., Thoma, R., Lutz, H. and Hofmann-Lehmann, R. (2007). Concurrent infections with vector-borne pathogens associated with fatal anaemia in cattle, haematology and blood chemistry. Comparative Clinical Pathology 17, 171177.Google Scholar
Robinson, M. T., Shaw, s.e. and Morgan, E. R. (2009). Anaplasma phagocytophilum infection in a multi-species deer community in the New Forest, England. European Journal of Wildlife Research 55, 439442.Google Scholar
Roby, T. O., Simpson, J. E. and Amerault, T. E. (1978). Elimination of the carrier state of bovine anaplasmosis with a long-acting oxytetracycline. American Journal of Veterinary Research 39, 11151116.Google Scholar
Rodríguez-Vivas, R. I., Mata-Mendez, Y., Pérez-Gutierrez, E. and Wagner, G. (2004). The effect of management factors on the seroprevalence of Anaplasma marginale in Bos indicus cattle in the Mexican tropics. Tropical Animal Health and Production 36, 135143.Google Scholar
Roellig, D. M. and Fang, Q. Q. (2012). Detection of Anaplasma phagocytophilum in ixodid ticks from equine-inhabited sites in the Southeastern United States. Vector Borne and Zoonotic Diseases 12, 330332.Google Scholar
Rogers, R. J. and Dunster, P. J. (1984). The elimination of Anaplasma marginale from carrier cattle by treatment with long acting oxytetracycline. Australian Veterinary Journal 61, 306.Google Scholar
Rogers, R. J., Dimmock, C. K., de Vos, A. J. and Rodwell, B. J. (1988). Bovine leucosis virus contamination of a vaccine produced in vivo against bovine babesiosis and anaplasmosis. Australian Veterianary Journal 65, 285287.Google Scholar
Sackett, D. and Holmes, P. (2006). Assessing the economic cost of endemic disease on the profitability of Australian beef cattle and sheep producers. Project code AHW 087. Final report. Meat & Livestock Australia Limited, North Sydney, Australia.Google Scholar
Saetiew, N., Simking, P., Inpankaew, T., Wongpanit, K., Kamyingkird, K., Wongnakphet, S., Stich, R. W. and Jittapalapong, S. (2015). Prevalence and genetic diversity of Anaplasma marginale infections in water buffaloes in Northeast Thailand. Journal of Tropical Medicine and Parasitology 38, 916.Google Scholar
Sainz, A. (2011). Ehrlichiosis/Anaplasmosis. In Enfermedades Vectoriales del perro y del gato, 1st Edn. (ed. Miró, G. and Solano-Gallego, L.), pp. 203226. Madrid, Achalantis.Google Scholar
Sainz, A., Amusategui, I. and Tesouro, M. A. (1999). Ehrlichia platys infection and disease in dogs in Spain. Jouranal of Veterianry Diagnositc Investigation 11, 382384.Google Scholar
Sainz, Á., Roura, X., Miró, G., Estrada-Peña, A., Kohn, B., Harrus, S. and Solano-Gallego, L. (2015). Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasite & Vectors 8, 75.Google Scholar
Sakamoto, L., Ichikawa, Y., Sakata, Y., Matsumoto, K. and Inokuma, H. (2010). Detection of Anaplasma bovis DNA in the peripheral blood of domestic dogs in Japan. Japanese Journal of Infectious Diseases 63, 349352.CrossRefGoogle ScholarPubMed
Salabarria, F. F. and Pino, R. (1988). Vertical transmission of Anaplasma marginale in cows affected in late pregnancy. Revista Cubana De Ciencias Veterinarias 19, 179182.Google Scholar
Salih, D. A., Hassan, S. M. and El Hussein, A. M. (2007). Comparisons among two serological tests and microscopic examination for the detection of Theileria annulata in cattle in northern Sudan. Preventive Veterinary Medicine 81, 323326.Google Scholar
Sanogo, Y. O., Davoust, B., Inokuma, H., Camicas, J. L., Parola, P. and Brouqui, P. (2003). First evidence of Anaplasma platys in Rhipicephalus sanguineus (Acari, Ixodida) collected from dogs in Africa. Onderstepoort Journal of Veterinary Research 70, 205212.Google Scholar
Santos, A. S., Alexandre, N., Sousa, R., Nuncio, M. S., Bacellar, F. and Dumler, J. S. (2009). Serological and molecular survey of Anaplasma species infection in dogs with suspected tickborne disease in Portugal. Veterinary Record 164, 168171.Google Scholar
Santos, H. A., Thomé, S. M., Baldani, C. D., Silva, C. B., Peixoto, M. P., Pires, M. S., Vitari, G. L., Costa, R. L., Santos, T. M., Angelo, I. C., Santos, L. A., Faccini, J. L. and Massard, C. L. (2013). Molecular epidemiology of the emerging zoonosis agent Anaplasma phagocytophilum (Foggie, 1949) in dogs and ixodid ticks in Brazil. Parasite & Vectors 6, 348.Google Scholar
Sarih, M., M'ghirbi, Y., Bouattour, A., Gern, L., Baranton, G. and Postic, D. (2005). Detection and identification of Ehrlichia spp. in ticks collected in Tunisia and Morocco. Journal of Clinical Microbiology 43, 11271132.Google Scholar
Sashika, M., Abe, G., Matsumoto, K. and Inokuma, H. (2011). Molecular survey of Anaplasma and Ehrlichia infections of feral raccoons (Procyon lotor) in Hokkaido, Japan. Vector Borne and Zoonotic Diseases 11, 349354.Google Scholar
Savidge, C., Ewing, P., Andrews, J., Aucoin, D., Lappin, M. R. and Moroff, S. (2016). Anaplasma phagocytophilum infection of domestic cats: 16 cases from the northeastern USA. Journal of Feline Medicine and Surgery 18, 8591.Google Scholar
Scoles, G. A., Broce, A. B., Lysyk, T. J. and Palmer, G. H. (2005). Relative efficiency of biological transmission of Anaplasma marginale (Rickettsiales: Anaplasmataceae) by Dermacentor andersoni (Acari, Ixodidae) compared with mechanical transmission by Stomoxys calcitrans (Diptera, Muscidae). Journal of Medical Entomology 42, 668675.Google Scholar
Scoles, G. A., Miller, J. A. and Foil, L. D. (2008). Comparison of the Efficiency of Biological Transmission of Anaplasma marginale (Rickettsiales: Anaplasmataceae) by Dermacentor andersoni Stiles (Acari: Ixodidae) with mechanical transmission by the horse Fly, Tabanus fuscicostatus Hine (Diptera: Muscidae). Journal of Medical Entomology 45, 109114.Google Scholar
Scharf, W., Schauer, S., Freyburger, F., Petrovec, M., Schaarschmidt-Kiener, D., Liebisch, G., Runge, M., Ganter, M., Kehl, A., Dumler, J. S., Garcia-Perez, A. L., Jensen, J., Fingerle, V., Meli, M. L., Ensser, A., Stuen, S. and Von Loewenich, F. D. (2011). Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. Journal of Clinical Microbiology 49, 790796.Google Scholar
Sharma, S. K., Benerjee, D. P. and Gautam, O. P. (1977). Application of various chemotherapeutic agents in experimental bovine anaplasmaosis. Annals de Recherches Veterinaires 8, 307313.Google Scholar
Shaw, S. E., Binns, S. H., Birtles, R. J., Day, M. J., Smithson, R. and Kenny, M. J. (2005). Molecular evidence of tick-transmitted infections in dogs and cats in the United Kingdom. Veterinary Record 157, 645648.Google Scholar
Shompole, S., Waghela, S. D., Rurangirwa, F. R. and Mcguire, T. (1989). Cloned DNA probes identify Anaplasma ovis in goats and reveal a high prevalence of infection. Journal of Clinical Microbiology 27, 27302735.Google Scholar
Silaghi, C., Scheuerle, M. C., Friche Passos, L. M., Thiel, C. and Pfister, K. (2011 a). PCR detection of Anaplasma phagocytophilum in goat flocks in an area endemic for tick-borne fever in Switzerland. Parasite 18, 5762.Google Scholar
Silaghi, C., Hamel, D., Thiel, C., Pfister, K., Passos, L. M. and Rehbein, S. (2011 b). Genetic variants of Anaplasma phagocytophilum in wild caprine and cervid ungulates from the Alpsin Tyrol, Austria. Vector Borne and Zoonotic Diseases 11, 355362.Google Scholar
Silaghi, C., Skuballa, J., Thiel, C., Pfister, K., Petney, T., Pfäffle, M., Taraschewski, H. and Passos, L. M. (2012). The European hedgehog (Erinaceus europaeus) – a suitable reservoir for variants of Anaplasma phagocytophilum . Ticks and Tick-borne Diseases 3, 4954.Google Scholar
Silveira, J. A., Rabelo, E. M. and Ribeiro, M. F. (2012). Molecular detection of tick-borne pathogens of the family Anaplasmataceae in Brazilian brown brocket deer (Mazama gouazoubira, Fischer, 1814) and marsh deer (Blastocerus dichotomus, Illiger, 1815). Transboundary and Emerging Diseases 59, 353360.Google Scholar
Silvestre, B. T., Silveira, J. A., Meneses, R. M., Facury-Filho, E. J., Carvalho, A. U. and Ribeiro, M. F. (2016). Identification of a vertically transmitted strain from Anaplasma marginale (UFMG3): molecular and phylogenetic characterization, and evaluation of virulence. Ticks and Tick-borne Diseases 7, 8084.Google Scholar
Smith, R. D., Levy, M. G., Kuhlenschmidt, M. S., Adams, J. H., Rzechula, D. L., Hardt, T. A. and Kocan, K. M. (1986). Isolate of Anaplasma marginale not transmitted by ticks. American Journal of Veterinary Research 47, 127129.Google Scholar
Simpson, R. M., Gaunt, S. D., Hair, J. A., Kocan, K. M., Henk, W. G. and Casey, H. W. (1991). Evaluation of Rhipicephalus sanguineus as a potential biologic vector of Ehrlichia platys . American Journal of Veterinary Research 52, 15371541.Google Scholar
Siska, W. D., Tuttle, R. E., Messick, J. B., Bisby, T. M., Toth, B. and Kritchevsky, J. E. (2013). Clinicopathologic characterization of six cases of equine granulocytic anaplasmosis in a nonendemic area (2008–2011). Journal of Equine Veterinary Science 33, 653657.Google Scholar
Slivinska, K., Víchová, B., Werszko, J., Szewczyk, T., Wróblewski, Z., Peťko, B., Ragač, O., Demeshkant, V. and Karbowiak, G. (2016). Molecular surveillance of Theileria equi and Anaplasma phagocytophilum infections in horses from Ukraine, Poland and Slovakia. Veterinary Parasitology 215, 3537.Google Scholar
Solano-Gallego, L., Trotta, M., Razia, L., Furlanello, T. and Caldin, M. (2006). Molecular survey of Ehrlichia canis and Anaplasma phagocytophilum from blood of dogs in Italy. Annals of the New York Academy of Sciences 1078, 515518.Google Scholar
Splitter, E. J., Twiehaus, M. J. and Castro, E. R. (1955). Anaplasmosis in sheep in the United States. Journal of the American Veterinary Medical Association 127, 244245.Google Scholar
Splitter, E. J., Anthony, H. D. and Twiehaus, M. J. (1956). Anaplasma ovis in the United States, experimental studies with sheep and goats. American Journal of Veterinary Research 17, 487491.Google Scholar
Sree Devi, C., Lakshmi, R. N. and Chengalva, R. V. (2011). Concurrent infection of theileriosis and ehrlichiosis in a buffalo. Journal of Veterinary Parasitology 25, 8485.Google Scholar
Sreekumar, C., Anandan, S., Balasundaram, S. and Rajavelu, G. (1996). Morphology and staining characteristics of Ehrlichia bovis . Comparative Immunology, Microbiology and Infectious Diseases 19, 7983.Google Scholar
Stewart, N. P., Dalgliesh, R. J. and Tratt, T. (1981). Life cycle of tick and tick fever parasites. Queensland Agricultural Journal 107, 305308.Google Scholar
Stiller, D., Leatch, G. and Kuttler, K. L. (1981). Dermacentor albipictus (Packard), an experimental vector of bovine anaplasmosis. In Proceedings of the 85th Annual Meeting of the United States Animal Health Association (USAHA), pp. 6573. St. Louis, MO, USA.Google Scholar
Stillman, B. A., Monn, M., Liu, J., Thatcher, B., Foster, P., Andrews, B., Little, S., Eberts, M., Breitschwerdt, E. B., Beall, M. J. and Chandrashekar, R. (2014). Performance of a commercially available in-clinic ELISA for detection of antibodies against Anaplasma phagocytophilum, Anaplasma platys, Borrelia burgdorferi, Ehrlichia canis, and Ehrlichia ewingii and Dirofilaria immitis antigen in dogs. Journal of American Veterinary Medical Association 245, 8086.Google Scholar
Stuen, S. (2003). Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) infection in sheep and wild ruminants in Norway. A study on clinical manifestation, distribution and persistence ., Ph.D. thesis, Norwegian School of Veterinary Science, Oslo, Norway.Google Scholar
Stuen, S. (2007). Anaplasma phagocytophilum – the most widespread tick-borne infection in animals in Europe. Veterinary Research Communications 31, 7984.Google Scholar
Stuen, S. and Bergstrom, K. (2001). The effect of two different oxytetracycline treatments in experimental Ehrlichia phagocytophila infected lambs. Acta Veterinaria Scandinavica 42, 339346.Google Scholar
Stuen, S., Pettersen, K. S., Granquist, E. G., Bergström, K., Bown, K. J. and Birtles, R. J. (2013 a). Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks and Tick-borne Diseases 4, 197201.Google Scholar
Stuen, S., Granquist, E. G. and Silaghi, C. (2013 b). Anaplasma phagocytophilum–a widespread multi-host pathogen with highly adaptive strategies. Frontiers in Cellular and Infection Microbiology 3, 133.Google Scholar
Szekeres, S., Claudia Coipan, E., Rigó, K., Majoros, G., Jahfari, S., Sprong, H. and Földvári, G. (2015). Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks and Tick-borne Diseases 6, 111116.Google Scholar
Teglas, M., Matern, E., Lein, S., Foley, P., Mahan, S. M. and Foley, J. (2005). Ticks and tick borne disease in Guatemalan cattle and horses. Veterinary Parasitology 131, 119127.Google Scholar
Tembue, A. A., da Silva, J. B., da Silva, F. J., Pires, M. S., Baldani, C. D., Soares, C. O., Massard, C. L. and da Fonseca, A. H. (2011). Seroprevalence of IgG antibodies against Anaplasma marginale in cattle from south Mozambique. Revista Brasileira de Parasitologia Veterinaria 20, 318324.Google Scholar
Theiler, A. (1910). Gall sickness of South Africa (anaplasmosis of cattle). Journal of Comparative Pathology and Therapeutics 23, 98115.Google Scholar
The Merck Veterinary Manual (1998). In: Rob Wilkinson class of 2005. https://www.vet.k-state.edu/docs/vhc/farm/ag-practice-updates/Bovine_Anaplasmosis.pdf Google Scholar
Tolnai, Z., Sréter-Lancz, Z. and Sréter, T. (2015). Spatial distribution of Anaplasma phagocytophilum and Hepatozoon canis in red foxes (Vulpes vulpes) in Hungary. Ticks and Tick-borne Diseases 6, 645648.Google Scholar
Torina, A., Alongi, A., Naranjo, V., Scimeca, S., Nicosia, S., Di Marco, V., Caracappa, S., Kocan, K. M. and de la Fuente, J. (2008). Characterizationof Anaplasma infections in Sicily, Italy. Annals of the New York Academy of Sciences 1149, 9093.Google Scholar
Torina, A., Galindo, R. C., Vicente, J., Di Marco, V., Russo, M., Aronica, V., Fiasconaro, M., Scimeca, S., Alongi, A., Caracappa, S., Kocan, K. M., Gortazar, C. and de la Fuente, J. (2010). Characterization of Anaplasma phagocytophilum and A. ovis infection in a naturally infected sheep flock with poor health condition. Tropical Animal Health and Production 42, 13271331.Google Scholar
Torina, A., Moreno-CID, J. A., Blanda, V., Fernández de Mera, I. G., de la Lastra, J. M., Scimeca, S., Blanda, M., Scariano, M. E., Briganò, S., Disclafani, R., Piazza, A., Vicente, J., Gortázar, C., Caracappa, S., Lelli, R. C. and de la Fuente, J. (2014). Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasite & Vectors 7, 10.Google Scholar
Torioni de Echaide, S., Knowles, D. P., Mcguire, T. C., Palmer, G. H., Suarez, C. E. and McElwain, T. F. (1998). Detection of cattle naturally infected with Anaplasma marginale in a region of endemicity by nested PCR and a competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5. Journal of Clinical Microbiology 36, 777782.Google Scholar
Turse, J. E., Scoles, G. A., Deringer, J. R., Fry, L. M. and Brown, W. C. (2014). Immunization-induced Anaplasma marginale-specific T-lymphocyte responses impaired by infection by A. marginale are restored after eliminating the infection with tetracycline. Clinical Vaccine and Immunology 21, 13691375.Google Scholar
Urdaz-Rodríguez, J. H., Fosgate, G. T., Waghela, S. D., Alleman, A. R., Rae, D. O., Donovan, G. A. and Melendez, P. (2009). Seroprevalence estimation and management factors associated with high herd seropositivity for Babesia bovis in commercial dairy farms of Puerto Rico. Tropical Animal Health and Production 7, 14651473.Google Scholar
Víchová, B., Majláthová, V., Nováková, M., Straka, M. and Pet'ko, B. (2010). First molecular detection of Anaplasma phagocytophilumin European brown bear (Ursus arctos). Vector Borne and Zoonotic Diseases 10, 543545.Google Scholar
Víchová, B., Majláthová, V., Nováková, M., Majláth, I., Čurlík, J., Bona, M., Komjáti-Nagyová, M. and Peťko, B. (2011). PCR detection of re-emerging tick-borne pathogen, Anaplasma phagocytophilum, in deer ked (Lipoptena cervi) a blood-sucking ectoparasite of cervids. Biologia 66, 10821086.Google Scholar
Walls, J. J., Greig, B., Neitzel, d.f. and Dumler, J. S. (1997). Natural infection of small mammal species in Minnesota with the agent of human granulocytic ehrlichiosis. Journal of Clinical Microbiology 35, 853855.Google Scholar
Wanduragala, L. and Ristic, M. (1993). Anaplasmosis. In Rickettsial and Chlamydial Diseases of Domestic Animals (ed. Woldehiwet, Z. and Ristic, M.), pp. 6587. Pergamon Press, Oxford.Google Scholar
Wei, L., Kelly, P., Ackerson, K., Zhang, J., El-Mahallawy, H. S., Kaltenboeck, B. and Wang, C. (2014). First report of Babesia gibsoni in Central America and survey for vector-borne infections in dogs from Nicaragua. Parasite & Vectors 7, 126.Google Scholar
Wen, B., Rikihisa, Y., Mott, J. M., Greene, R., Kim, H. Y., Zhi, N., Couto, G. C., Unver, A. and Bartsch, R. (1997). Comparison of nested PCR with immunofluorescent-antibody assay for detection of Ehrlichia canis infection in dogs treated with doxycycline. Journal of Clinical Microbiology 35, 18521855.Google Scholar
Willadsen, P. (2006). Tick control: thoughts on a research agenda. Veterinary Parasitology 138, 161168.Google Scholar
Woldehiwet, Z. (2010). The natural history of Anaplasma phagocytophilum . Veterinary Parasitology 167, 108122.Google Scholar
Wormser, G. P., Dattwyler, R. J., Shapiro, E. D., Halperin, J. J., Steere, A. C., Klempner, M. S., Krause, P. J., Bakken, J. S., Strle, F., Stanek, G., Bockenstedt, L., Fish, D., Dumler, J. S. and Nadelman, R. B. (2006). The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis, clinical practice guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases 43, 10891134.Google Scholar
Wuritu, , Ozawa, Y., Gaowa, , Kawamori, F., Masuda, T., Masuzawa, T., Fujita, H. and Ohashi, N. (2009). Structural analysis of a p44/msp2 expression site of Anaplasma phagocytophilum in naturally infected ticks in Japan. Journal of Medical Microbiology 58, 16381644.Google Scholar
Yabsley, M. J., Davidson, W. R., Stallknecht, D. E., Varela, A. S., Swift, P. K., Devos, J. C. Jr. and Dubay, S. A. (2005). Evidence of tickborne organisms in mule deer (Odocoileus hemionus) from the western United States. Vector Borne and Zoonotic Diseases 5, 351362.Google Scholar
Yang, J., Liu, Z., Guan, G., Liu, Q., Li, Y., Chen, Z., Ma, M., Liu, A., Ren, Q., Luo, J. and Yin, H. (2013). Prevalence of Anaplasma phagocytophilum in ruminants, rodents and ticks in Gansu, north-western China. Journal of Medical Microbiology 62, 254258.Google Scholar
Yang, J., Li, Y., Liu, Z., Liu, J., Niu, Q., Ren, Q., Chen, Z., Guan, G., Luo, J. and Yin, H. (2015 a). Molecular detection and characterization of Anaplasma spp. in sheep and cattle from Xinjiang, northwest China. Parasite & Vectors 8, 108.Google Scholar
Yang, J., Liu, Z., Niu, Q., Tian, Z., Liu, J., Guan, G., Liu, G., Luo, J., Wang, X. and Yin, H. (2015 b). Tick-borne zoonotic pathogens in birds in Guangxi, Southwest China. Parasites & Vectors 8, 637.Google Scholar
Yasini, S., Khaki, Z., Rahbari, S., Kazemi, B., Amoli, J. S., Gharabaghi, A. and Jalali, S. (2012). Hematologic and clinical aspects of experimental ovine anaplasmosis caused by Anaplasma ovis in Iran. Iranian Journal of Parasitology 7, 9198.Google Scholar
Ybañez, A. P., Matsumoto, K., Kishimoto, T., Yokoyama, N. and Inokuma, H. (2012). Dual presence of Anaplasma phagocytophilum and its closely related Anaplasma sp. in ixodid ticks in Hokkaido, Japan, and their specific molecular detection. Journal of Veterinary Medical Science 74, 15511560.Google Scholar
Ybañez, A. P., Sivakumar, T., Battsetseg, B., Battur, B., Altangerel, K., Matsumoto, K., Yokoyama, N. and Inokuma, H. (2013 a). Specific molecular detection and characterization of Anaplasma marginale in Mongolian cattle. The Journal of Veterinary Medical Science 75, 399406.Google Scholar
Ybañez, A. P., Sivakumar, T., Ybañez, R. H., Ratilla, J. C., Perez, Z. O., Gabotero, S. R., Hakimi, H., Kawazu, S., Matsumoto, K., Yokoyama, N. and Inokuma, H. (2013 b). First molecular characterization of Anaplasma marginale in cattle and Rhipicephalus (Boophilus) microplus ticks in Cebu, Philippines. Journal of Veterinary Medical Science 75, 2736.Google Scholar
Ybañez, A. P., Sivakumar, T., Ybañez, R. H., Vincoy, M. R., Tingson, J. A., Perez, Z. O., Gabotero, S. R., Buchorno, L. P., Inoue, N., Matsumoto, K., Inokuma, H. and Yokoyama, N. (2013 c). Molecular survey of bovine vector-borne pathogens in Cebu, Philippines. Veterinary Parasitology 196, 1320.Google Scholar
Ybañez, A. P., Sashika, M. and Inokuma, H. (2014). The phylogenetic position of Anaplasma bovis and inferences on the phylogeny of the Genus Anaplasma . Journal of Veterinary Medical Science 76, 307312.Google Scholar
Yoshimoto, K., Matsuyama, Y., Matsuda, H., Sakamoto, L., Matsumoto, K., Yokoyama, N. and Inokuma, H. (2010). Detection of Anaplasma bovis and Anaplasma phagocytophilum DNA from Haemaphysalis megaspinosa in Hokkaido, Japan. Veterinary Parasitology 168, 170172.Google Scholar
Zaugg, J. L. (1985). Bovine anaplasmosis: transplacental transmission as it relates to stage of gestation. American Journal of Veterinary Research 46, 570572.Google Scholar
Zaugg, J. L., Goff, W. L., Foreyt, W. and Hunter, D. L. (1996). Susceptibility of elk (Cervus elaphus) to experimental infection with Anaplasma marginale and A. ovis . Journal of Wildlife Diseases 32, 6266.Google Scholar
Zeidner, N. S., Burkot, T. R., Massung, R., Nicholson, W. L., Dolan, M. C., Rutherford, J. S., Biggerstaff, B. J. and Maupin, G. O. (2000). Transmission of the agent of humangranulocytic ehrlichiosis by Ixodes spinipalpis ticks, evidence of an enzootic cycle of dual infection with Borrelia burgdorferi in Northern Colorado. The Journal of Infectious Diseases 182, 616619.Google Scholar
Zeidner, N. S., Massung, R. F., Dolan, M. C., Dadey, E., Gabitzsch, E., Dietrich, G. and Levin, M. L. (2008). A sustained-release formulation of doxycycline hyclate (Atridox) prevents simultaneous infection of Anaplasma phagocytophilum and Borrelia burgdorferi transmitted by tick bite. Journal of Medical Microbiology 57, 463468.Google Scholar
Zele, D., Avbersek, J., Gruntar, I., Ocepek, M. and Vengust, G. (2012). Evidence of Anaplasma phagocytophilum in game animals from Slovenia. Acta Veterinaria Hungarica 60, 441448.Google Scholar
Zeman, P. and Pecha, M. (2008). Segregation of genetic variants of Anaplasma phagocytophilum circulating among wild ruminants within a Bohemian forest (Czech Republic). International Journal of Medical Microbiology 298, 203210.Google Scholar
Zhang, L., Liu, Y., Ni, D., Li, Q., Yu, Y., Yu, X. J., Wan, K., Li, D., Liang, G., Jiang, X., Jing, H., Run, J., Luan, M., Fu, X., Zhang, J., Yang, W., Wang, Y., Dumler, J. S., Feng, Z., Ren, J. and Xu, J. (2008). Nosocomial transmission of human granulocytic anaplasmosis in China. Journal of the American Medical Association 300, 22632270.Google Scholar
Zhang, L., Liu, H., Xu, B., Zhang, Z., Jin, Y., Li, W., Lu, Q., Li, L., Chang, L., Zhang, X., Fan, D., Cao, M., Bao, M., Zhang, Y., Guan, Z., Cheng, X., Tian, L., Wang, S., Yu, H., Yu, Q., Wang, Y., Zhang, Y., Tang, X., Yin, J., Lao, S., Wu, B., Li, J., Li, W., Xu, Q., Shi, Y. and Huang, F. (2014). Rural residents in China are at increased risk of exposure to tick-borne pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis . BioMed Research International 2014, 313867.Google Scholar
Zivkovic, Z., Esteves, E., Almazán, C., Daffre, S., Nijhof, A. M., Kocan, K. M., Jongejan, F. and de la Fuente, J. (2010). Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus) microplus in response to infection with Anaplasma marginale . BMC Genomics 11, 186.Google Scholar
Zobba, R., Anfossi, A. G., Pinna Parpaglia, M. L., Dore, G. M., Chessa, B., Spezzigu, A., Rocca, S., Visco, S., Pittau, M. and Alberti, A. (2014). Molecular investigation and phylogeny of Anaplasma spp. in Mediterranean ruminants reveal the presence of neutrophil-tropic strains closely related to A. platys . Applied and Environmental Microbiology 80, 271280.Google Scholar
Zobba, R., Anfossi, A. G., Visco, S., Sotgiu, F., Dedola, C., Pinna Parpaglia, M. L., Battilani, M., Pittau, M. and Alberti, A. (2015). Cell tropism and molecular epidemiology of Anaplasma platys-like strains in cats. Ticks and Tick-borne Diseases 6, 272280.Google Scholar