Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:31:14.709Z Has data issue: false hasContentIssue false

An analysis of the population genetics of potential multi-drug resistance in Wuchereria bancrofti due to combination chemotherapy

Published online by Cambridge University Press:  26 February 2007

A. E. SCHWAB
Affiliation:
Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
T. S. CHURCHER
Affiliation:
Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK
A. J. SCHWAB
Affiliation:
Research Institute of the McGill University, Health Centre General Hospital, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4
M.-G. BASÁÑEZ
Affiliation:
Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK
R. K. PRICHARD*
Affiliation:
Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
*
*Corresponding author: Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9. Tel: +1 514 398 7729. Fax: +1 514 398 7857. E-mail: roger.prichard@mcgill.ca

Summary

Currently, annual mass treatments with albendazole (ABZ) plus ivermectin (IVM) or diethylcarbamazine (DEC) are administered under the Global Programme to Eliminate Lymphatic Filariasis (GPELF). Drug resistance against both ABZ and IVM is prevalent in nematodes of veterinary importance, raising awareness that if anthelmintic resistance were to develop among Wuchereria bancrofti populations, this would jeopardize GPELF's goals. Genetic structure was incorporated into an existing transmission dynamics model for lymphatic filariasis (LF) to investigate the potential development of concurrent resistance to ABZ and IVM. The resultant models explore the impact of different inheritance modes of resistance to ABZ and IVM on the likely risk of treatment failure under our model assumptions. Results indicate that under ABZ+IVM combination, selection for resistance to one drug is enhanced if resistance to the other drug is already present. Excess parasite homozygosity may increase selection for dominant IVM resistance via enhancing the frequency of recessive ABZ resistance. The model predicts that if multiple resistance genes are associated with different efficacy properties of a drug combination, then examining changes at single loci may be misleading. Sampling schemes in genetic epidemiological surveys investigating the frequency of an allele under selection should consider host age, as individuals of different ages may acquire parasites at different rates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addiss, D. G., Beach, M. J., Streit, T. G., Lutwick, S., LeConte, F. H., Lafontant, J. G., Hightower, A. W. and Lammie, P. J. (1997). Randomised placebo-controlled comparison of ivermectin and albendazole alone and in combination for Wuchereria bancrofti microfilaraemia in Haitian children. Lancet 350, 480484.CrossRefGoogle ScholarPubMed
Ardelli, B. F., Guerriero, S. B. and Prichard, R. K. (2006 a). Ivermectin imposes selection pressure on P-glycoprotein from Onchocerca volvulus: linkage disequilibrium and genotype diversity. Parasitology 132, 375386.CrossRefGoogle ScholarPubMed
Ardelli, B. F., Guerriero, S. B. and Prichard, R. K. (2006 b). Characterization of a half-size ATP-binding cassette transporter gene which may be a useful marker for ivermectin selection in Onchocerca volvulus. Molecular and Biochemical Parasitology 145, 94100.CrossRefGoogle ScholarPubMed
Ardelli, B. F., Guerriero, S. B. and Prichard, R. K. (2005). Genomic organization and effects of ivermectin selection on Onchocerca volvulus P-glycoprotein. Molecular and Biochemical Parasitology 143, 5866.CrossRefGoogle ScholarPubMed
Ardelli, B. F. and Prichard, R. K. (2004). Identification of variant ABC-transporter genes among Onchocerca volvulus collected from ivermectin-treated and untreated patients in Ghana, West Africa. Annals of Tropical Medicine and Parasitology 98, 371384.CrossRefGoogle ScholarPubMed
Awadzi, K., Attah, S. K., Addy, E. T., Opoku, N. O., Quartey, B. T., Lazdins-Helds, J. K., Ahmed, K., Boatin, B. A., Boakye, D. A. and Edwards, G. (2004 a). Thirty-month follow-up of sub-optimal responders to multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Annals of Tropical Medicine and Parasitology 98, 359370.CrossRefGoogle ScholarPubMed
Awadzi, K., Boakye, D. A., Edwards, G., Opoku, N. O., Attah, S. K., Osei-Atweneboana, M. Y., Lazdins-Helds, J. K., Ardrey, A. E., Addy, E. T., Quartey, B. T., Ahmed, K., Boatin, B. A. and Soumbey-Alley, E. W. (2004 b). An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Annals of Tropical Medicine and Parasitology 98, 231249.CrossRefGoogle ScholarPubMed
Barnes, E. H., Dobson, R. J. and Barger, I. A. (1995). Worm control and anthelmintic resistance: adventures with a model. Parasitology Today 11, 5663.CrossRefGoogle ScholarPubMed
Barnes, E. H., Dobson, R. J., Stein, P. A., Le Jambre, L. F. and Lenane, I. J. (2001). Selection of different genotype larvae and adult worms for anthelmintic resistance by persistent and short-acting avermectin/milbemycins. International Journal for Parasitology 31, 720727.CrossRefGoogle ScholarPubMed
Blackhall, W. J., Pouliot, J.-F., Prichard, R. K. and Beech, R. N. (1998 a). Haemonchus contortus: Selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Experimental Parasitology 90, 4248.CrossRefGoogle Scholar
Blackhall, W., Liu, H. Y., Xu, M., Prichard, R. K. and Beech, R. N. (1998 b). Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Molecular and Biochemical Parasitology 95, 193201.CrossRefGoogle Scholar
Bryan, J. H. and Southgate, B. A. (1988). Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 2. Damage to ingested microfilariae by mosquito foregut armatures and development of filarial larvae in mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 138145.CrossRefGoogle ScholarPubMed
Bryan, J. H., McMahon, P. and Barnes, A. (1990). Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 3. Uptake and damage to ingested microfilariae by Anopheles gambiae, An. arabiensis, An. merus and An. funestus in East Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 265268.CrossRefGoogle Scholar
Chan, M.-S., Norman, R. A., Michael, E., Bundy, D. A. P., Das, P. K., Pani, S. P. and Ramaiah, K. D. (1999). http://www.schoolsandhealth.org/epidynamics.htm (accessed July 2006).Google Scholar
Chan, M.-S., Srividya, A., Norman, R. A., Pani, S. P., Ramaiah, K. D., Vanamail, P., Michael, E., Das, P. K. and Bundy, D. A. (1998). Epifil: a dynamic model of infection and disease in lymphatic filariasis. American Journal of Tropical Medicine and Hygiene 59, 606614.CrossRefGoogle ScholarPubMed
Churcher, T. S. (2006). Modeling the spread of anthelmintic resistance. Ph.D. thesis, Imperial College London.Google Scholar
Dadzie, K. Y., Basáñez, M.-G. and Richards, F. (2004). Epidemiology, parasite biology and modeling. In Towards a Strategic Plan for Research to Support the Global Program to Eliminate Lymphatic Filariasis. American Journal of Tropical Medicine and Hygiene 71 (Suppl.), 2223.CrossRefGoogle Scholar
Dean, M. (2002). Towards the elimination of lymphatic filariasis. Lancet 359, 1677.CrossRefGoogle ScholarPubMed
Dunyo, S. K., Nkrumah, F. K. and Simonsen, P. E. (2000). A randomized double-blind placebo-controlled field trial of ivermectin and albendazole alone and in combination for the treatment of lymphatic filariasis in Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 205211.CrossRefGoogle ScholarPubMed
Eberhard, M. L., Lammie, P. J., Dickinson, C. M. and Roberts, J. M. (1991). Evidence of nonsusceptibility to diethylcarbamazine in Wuchereria bancrofti. Journal of Infectious Diseases 163, 11571160.CrossRefGoogle ScholarPubMed
Eberhard, M. L., Lowrie, R. C. Jr. and Lammie, P. J. (1988). Persistence of microfilaremia in bancroftian filariasis after diethylcarbamazine citrate therapy. Tropical Medicine and Parasitology 39, 128130.Google ScholarPubMed
Edwards, C. H. Jr. and Penney, D. E. (1989). Elementary Differential Equations with Boundary Value Problems, 2nd Edn. Prentice-Hall, New Jersey.Google Scholar
Elard, L. and Humbert, J. F. (1999). Importance of the mutation of amino acid 200 of the isotype 1 beta-tubulin gene in the benzimidazole resistance of the small-ruminant parasite Teladorsagia circumcincta. Parasitology Research 85, 452456.CrossRefGoogle ScholarPubMed
Eng, J. K. and Prichard, R. K. (2005). A comparison of genetic polymorphism in populations of Onchocerca volvulus from untreated- and ivermectin-treated patients. Molecular Biochemistry and Parasitology 142, 193202.CrossRefGoogle ScholarPubMed
Eng, J. K., Blackhall, W. J., Osei-Atweneboana, M. Y., Bourguinat, C., Galazzo, D., Beech, R. N., Unnasch, T. R., Awadzi, K., Lubega, G. W. and Prichard, R. K. (2006). Ivermectin selection on β-tubulin: Evidence in Onchocerca volvulus and Haemonchus contortus. Molecular and Biochemical Parasitology 150, 229235.CrossRefGoogle ScholarPubMed
Esterre, P., Plichart, C., Séchan, Y. and Nguyen, N. L. (2001). The impact of 34 years of massive DEC chemotherapy on Wuchereria bancrofti infection and transmission: the Maupiti cohort. Tropical Medicine and International Health 6, 190195.CrossRefGoogle ScholarPubMed
Gyapong, J. O., Kyelem, D., Kleinschmidt, I., Agbo, K., Ahouandogbo, F., Gaba, J., Owusu-Banahene, G., Sanou, S., Sodahlon, Y. K., Biswas, G., Kale, O. O., Molyneux, D. H., Roungou, J. B., Thomson, M. C. and Remme, J. (2002). The use of spatial analysis in mapping the distribution of bancroftian filariasis in four West African countries. Annals of Tropical Medicine and Parasitology 96, 695705.CrossRefGoogle ScholarPubMed
Hartl, D. L. and Clark, A. G. (1997). Principles of Population Genetics. 3rd Edn. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar
Ismail, M. M., Jayakody, R. L., Weil, G. J., Nirmalan, N., Jayasinghe, K. S., Abeyewickrema, W., Rezvi Sheriff, M. H., Rajaratnam, H. N., Amarasekera, N., de Silva, D. C., Michalski, M. L. and Dissanaike, A. S. (1998). Efficacy of single dose combinations of albendazole, ivermectin and diethylcarbamazine for the treatment of bancroftian filariasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 9497.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Geoghegan, M. and Lyndal-Murphy, M. (2005). Characterization of moxidectin resistant Trichostrongylus colubriformis and Haemonchus contortus. Veterinary Parasitology 128, 8390.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Gill, J. H., Lenane, I. J. and Baker, P. (2000). Inheritance of avermectin resistance in Haemonchus contortus. International Journal for Parasitology 30, 105111.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1988). On measures of gametic disequilibrium. Genetics 120, 849852.CrossRefGoogle ScholarPubMed
Maher, D. and Ottesen, E. A. (2000). The Global Lymphatic Filariasis Initiative. Tropical Doctor 30, 178179.CrossRefGoogle ScholarPubMed
Michael, E., Malecela-Lazaro, M. N., Simonsen, P. E., Pedersen, E. M., Barker, G., Kumar, A. and Kazura, J. W. (2004). Mathematical modelling and the control of lymphatic filariasis. Lancet Infectious Diseases 4, 223234.CrossRefGoogle ScholarPubMed
Michael, E., Malecela-Lazaro, M. N., Maegga, B. T., Fischer, P. and Kazura, J. W. (2006). Mathematical models and lymphatic filariasis control: monitoring and evaluating interventions. Trends in Parasitology 22, 529535.CrossRefGoogle ScholarPubMed
Norman, R. A., Chan, M. S., Srividya, A., Pani, S. P., Ramaiah, K. D., Vanamail, P., Michael, E., Das, P. K. and Bundy, D. A. (2000). EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiology and Infection 124, 529541.CrossRefGoogle ScholarPubMed
Ottesen, E. A. (2000). The global programme to eliminate lymphatic filariasis. Tropical Medicine and International Health 5, 591594.CrossRefGoogle ScholarPubMed
Ottesen, E. A. (2002). Major progress toward eliminating lymphatic filariasis. New England Journal of Medicine 347, 18851886.CrossRefGoogle ScholarPubMed
Plaisier, A. P., Cao, W. C., Van Oortmarssen, G. J. and Habbema, J. D. F. (1999). Efficacy of ivermectin in the treatment of Wuchereria bancrofti infection: a model-based analysis of trial results. Parasitology 119, 385394.CrossRefGoogle ScholarPubMed
Plaisier, A. P., Subramanian, S., Das, P. K., Souza, W., Lapa, T., Furtado, A. F., Van der Ploeg, C. P., Habbema, J. D. F. and van Oortmarssen, G. J. (1998). The LYMFASIM simulation program for modeling lymphatic filariasis and its control. Methods of Information in Medicine 37, 97108.Google ScholarPubMed
Prichard, R. K. (1990). Anthelmintic resistance in nematodes: extent, recent understanding and future directions for control and research. International Journal for Parasitology 20, 515523.CrossRefGoogle ScholarPubMed
Prichard, R. K. (2001). Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17, 445453.CrossRefGoogle ScholarPubMed
Prichard, R. K. (2005). Is anthelmintic resistance a concern for heartworm control? What can we learn from the human filariasis control programs? Veterinary Parasitology 133, 243253.CrossRefGoogle ScholarPubMed
Prichard, R. K., Hall, C. A., Kelly, J. D., Martin, I. C. and Donald, A. D. (1980). The problem of anthelmintic resistance in nematodes. Australian Veterinary Journal 56, 239251.CrossRefGoogle ScholarPubMed
Ramaiah, K. D., Guyatt, H., Ramu, K., Vanamail, P., Pani, S. P. and Das, P. K. (1999). Treatment costs and loss of work time to individuals with chronic lymphatic filariasis in rural communities in south India. Tropical Medicine and International Health 4, 1925.CrossRefGoogle ScholarPubMed
Remme, J. H. F., Feenstra, P., Lever, P. R., Medici, A. C., Morel, C. M., Noma, M., Ramaiah, K. D., Richards, F., Sékétéli, A., Schmunis, G., van Brakel, W. H. and Vassall, A. (2006). Tropical diseases targeted for elimination: Chagas disease, lymphatic filariasis, onchocerciasis, and leprosy. In: Disease Control Priorities in Developing Countries (ed. Jamison, D. T., Breman, J. G., Measham, A. R., Alleyne, G., Claeson, M., Evans, D. B., Jha, P., Mills, A. and Musgrove, P.), pp. 433449. The World Bank and Oxford University Press, USA.Google Scholar
Schwab, A. E., Boakye, D., Kyelem, D. and Prichard, R. K. (2005). Detection of benzimidazole-resistance associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection with albendazole and ivermectin treatment. American Journal of Tropical Medicine and Hygiene 73, 234238.CrossRefGoogle Scholar
Schwab, A. E., Churcher, T. S., Schwab, A. J., Basáñez, M.-G. and Prichard, R. K. (2006). Population genetics of concurrent selection with albendazole and ivermectin or diethylcarbamazine on the possible spread of albendazole resistance in Wuchereria bancrofti. Parasitology 133, 589601.CrossRefGoogle ScholarPubMed
Silvestre, A. and Cabaret, J. (2002). Mutation in position 167 of isotype 1 beta-tubulin gene of trichostrongylid nematodes: role in benzimidazole resistance? Molecular and Biochemical Parasitology 120, 297300.CrossRefGoogle ScholarPubMed
Stolk, W. A., Ramaiah, K. D., Van Oortmarssen, G. J., Das, P. K., Habbema, J. D. and De Vlas, S. J. (2004). Meta-analysis of age-prevalence patterns in lymphatic filariasis: no decline in microfilaraemia prevalence in older age groups as predicted by models with acquired immunity. Parasitology 129, 605612.CrossRefGoogle ScholarPubMed
Sutherland, I. A., Leathwick, D. M., Moen, I. C. and Bisset, S. A. (2002). Resistance to therapeutic treatment with macrocyclic lactone anthelmintics in Ostertagia circumcincta. Veterinary Parasitology 109, 9199.CrossRefGoogle ScholarPubMed
WHO (2003). Control of Lymphatic Filariasis in China. World Health Organization, Western Pacific Region.Google Scholar
Wolstenholme, A. J., Fairweather, I., Prichard, R. K., von Samson-Himmelstjerna, G. and Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle ScholarPubMed
Wright, S. (1951). The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle ScholarPubMed
Zagaria, N. and Savioli, L. (2002). Elimination of lymphatic filariasis: a public-health challenge. Annals of Tropical Medicine and Parasitology 96 (Suppl 2), S3S13.CrossRefGoogle ScholarPubMed