Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:37:15.456Z Has data issue: false hasContentIssue false

Anti-parasitic effect of the diuretic and Na+-ATPAse inhibitor furosemide in cutaneous leishmaniasis

Published online by Cambridge University Press:  06 June 2017

N. ARRUDA-COSTA
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Av Carlos Chagas Filho 373, 21941-901 Rio de Janeiro, Brazil
D. ESCRIVANI
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Av Carlos Chagas Filho 373, 21941-901 Rio de Janeiro, Brazil
E. E. ALMEIDA-AMARAL
Affiliation:
Fundação Oswaldo Cruz, Av Brazil 4365, 21040-900, Manguinhos, Rio de Janeiro, Brazil
J. R. MEYER-FERNANDES
Affiliation:
Instituto de Bioquímica Médica Leopoldo de Meis, Av Carlos Chagas Filho 373, 21941-901 Rio de Janeiro, Brazil
B. ROSSI-BERGMANN*
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Av Carlos Chagas Filho 373, 21941-901 Rio de Janeiro, Brazil
*
*Corresponding author: Instituto de Biofísica Carlos Chagas Filho, Av Carlos Chagas Filho 373, 21·9410901 Rio de Janeiro, Brazil. Email: bartira@biof.ufrj.br

Summary

Leishmania amazonensis promastigotes are known to express furosemide (Lasix®)-sensitive P-type membrane Na+-ATPase. In the present study, furosemide activity was studied in intracellular amastigotes and infected BALB/c mice to investigate its efficacy in cutaneous leishmaniasis (CL). Intracellular parasites, but not macrophages, were found to be sensitive to killing by furosemide (IC50 = 87 µmvs CC50 ≫ 1000 µm, respectively). Although furosemide did not induce nitric oxide production or intracellular pH changes in infected macrophages, it led to a significant reactive oxygen species (ROS) burst. Freshly isolated tissue parasites expressed a high degree of Na+-ATPase activity that decreased with culture, indicative of a higher enzyme expression in amastigotes than in promastigotes. Both intraperitoneal and oral treatment of L. amazonensis-infected mice with furosemide dosages equivalent to that prescribed as a diuretic significantly reduced the parasite's growth compared with the situation in untreated mice. Combination with oral furosemide increased the efficacy and safety of intraperitoneal treatment with sodium stibogluconate (SSG). To summarize, furosemide control of intracellular leishmanial growth by means of parasite Na+-ATPase inhibition, and macrophage ROS activation may help explain its sole and SSG-combined therapeutic effect against murine CL.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoine, J. C., Prina, E., Jouanne, C. and Bongrand, P. (1990). Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH. Infection and Immunity 58, 779787. PMCID: PMC258533.Google Scholar
Balestieri, F. M., Queiroz, A. R., Scavone, C., Costa, V. M., Barral-Netto, M. and Abrahamsohn Ide, A. (2002). Leishmania (L.) amazonensis-induced inhibition of nitric oxide synthesis in host macrophages. Microbes and Infection 4, 2329. doi: dx.doi.org/10.1016/S1286-4579(01)01505-2.Google Scholar
De Almeida-Amaral, E. E., Caruso-Neves, C., Pires, V. M. and Meyer-Fernandes, J. R. (2008). Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase activity. Experimental Parasitology 118, 165171. doi: 10.1016/j.exppara.2007.07.001.Google Scholar
Felibertt, P., Bermúdez, R., Cervino, V., Dawidowicz, K., Dagger, F., Proverbio, T., Marín, R. and Benaim, G. (1995). Ouabain-sensitive Na+,K+-ATPase in the plasma membrane of Leishmania mexicana . Molecular and Biochemical Parasitology 74, 179187. doi: 10.1016/0166-6851(95)02497-2.Google Scholar
Giménez, I. (2006). Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Current Opinion in Nephrology and Hypertension 15, 517523. doi:10.1097/01.mnh.000024217844576.b0.Google Scholar
Iizumi, K., Mikami, Y., Hashimoto, M., Nara, T., Hara, Y. and Aoki, T. (2006). Molecular cloning and characterization of ouabain-insensitive Na(+)-ATPase in the parasitic protist, Trypanosoma cruzi . Biochimica et Biophysica Acta 1758, 738746. doi: 10.1016/j.bbamem.2006.04.025.Google Scholar
Kaiser, M., Mäser, P., Tadoori, L. P., Ioset, J. R. and Brun, R. (2015). Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS ONE 10, e0135556. doi: 10.1371/journal.pone.0135556.Google Scholar
Lahet, J. J., Lenfant, F., Courderot-Masuyer, C., Ecarnot-Laubriet, E., Vergely, C., Durnet-Archeray, M. J., Freysz, M. and Rochette, L. (2003). In vivo and in vitro antioxidant properties of furosemide. Life Sciences 73, 10751082. doi: dx.doi.org/10.1016/S0024-3205(03)00382-5.Google Scholar
Lawn, S. D., Armstrong, M., Chilton, D. and Whitty, C. J. (2006). Electrocardiographic and biochemical adverse effects of sodium stibogluconate during treatment of cutaneous and mucosal leishmaniasis among returned travellers. Transactions of the Royal Society of Tropical Medicine and Hygiene 100, 264269. doi: 10.1016/j.trstmh.2005.03.012.Google Scholar
Lima, H. C., Bleyenberg, J. A. and Titus, R. G. (1997). A simple method for quantifying Leishmania in tissues of infected animals. Parasitology Today 13, 8082. doi:10.1016/S0169–4758(96)40010-2.Google Scholar
Marim, F. M., Silveira, T. N., Lima, D. S. Jr. and Zamboni, D. S. (2012). A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS ONE 5, e15263. doi: 10.1371/journal.pone.0015263.Google Scholar
Mears, E. R., Modabber, F., Don, R. and Johnson, G. E. (2015). A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Neglected Tropical Diseases 9, e0003889. doi: 10.1371/journal.pntd.0003889.Google Scholar
Monge-Maillo, B. and Lopez-Velez, R. (2015). Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clinical Infectious Diseases 60, 13981404. doi: 10.1093/cid/civ004.Google Scholar
Mukbel, R. M., Patten, C. Jr., Gibson, K., Ghosh, M., Petersen, C. and Jones, D. E. (2007). Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. The American Journal of Tropical Medicine and Hygiene 76, 669675. PMID: 17426168.Google Scholar
Nielsen, L. H., Melero, A., Keller, S. S., Jacobsen, J., Garrigues, T., Rades, T., Müllertz, A. and Boisen, A. (2016). Polymeric microcontainers improve oral bioavailability of furosemide. International Journal of Pharmaceutics 504, 98109. doi: 10.1016/j.ijpharm.2016.03.050.Google Scholar
Obonaga, R., Fernández, O. L., Valderrama, L., Rubiano, L. C., Castro Mdel, M., Barrera, M. C., Gomez, M. A. and Gore Saravia, N. (2014). Treatment failure and miltefosine susceptibility in dermal leishmaniasis caused by Leishmania subgenus Viannia species. Antimicrobial Agents Chemotherapy 58, 144152. doi: 10.1128/AAC.01023-13.Google Scholar
Oliveira, L. F., Schubach, A. O., Martins, M. M., Passos, S. L., Oliveira, R. V., Marzochi, M. C. and Andrade, C. A. (2011). Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Tropica 118, 8796. doi: 10.1016/j.actatropica.2011.02.007.Google Scholar
Otsuka, T., Takagi, H., Horiguchi, N., Toyoda, M., Sato, K., Takayama, H. and Mori, M. (2002). CCl4-induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK2 overexpression. FEBS Letters 532, 391395. doi: 10.1016/S0014–5793(02)03714-6.Google Scholar
Pacifici, G. M. (2012). Clinical pharmacology of the loop diuretics furosemide and bumetanide in neonates and infants. Pediatrics Drugs 14, 233246. doi: 10.2165/11596620-000000000-00000.Google Scholar
Reagan-Shaw, S., Nihal, M. and Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB Journal 22, 659661. doi: 10.1096/fj.07-9574LSF.Google Scholar
Rodríguez-Navarro, A. and Benito, B. (2010). Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochimica et Biophysica Acta 1798, 1841–53. doi: 10.1016/j.bbamem.2010.07.009.Google Scholar
Shanehsaz, S. M. and Ishkhanian, S. (2015). A comparative study between the efficacy of oral cimetidine and low-dose systemic meglumine antimoniate (MA) with a standard dose of systemic MA in the treatment of cutaneous leishmaniasis. International Journal of Dermatology 54, 834838. doi: 10.1111/ijd.12709.Google Scholar
Sibley, L. D., Weidner, E. and Krahenbuhl, J. L. (1985). Phagosome acidification blocked by intracellular Toxoplasma gondii . Nature 315, 416419. doi: 10.1038/315416a0.Google Scholar
Stiles, J. K., Kucerova, Z., Sarfo, B., Meade, C. A., Thompson, W., Shah, P., Xue, L. and Meade, J. C. (2003). Identification of surface-membrane P-type ATPases resembling fungal K(+)- and Na(+)-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani . Annals of Tropical Medicine and Parasitology 97, 351366. doi: 10.1179/000349803235002362.Google Scholar
Sturgill-Koszycki, S. and Swanson, M. S. (2000). Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. The Journal of Experimental Medicine 192, 12611272. doi: 10.1084/jem.192.9.1261.Google Scholar
Sundar, S. and Chakravarty, J. (2015). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy 16, 237–52. doi: 10.1517/ 14656566.2015.973850.Google Scholar
World Health Organization (2012). Research Priorities for Chagas Disease, HAT and Leishmaniasis. WHO Technical Report Series. No. 975. Technical Report of the TDR Disease Reference Group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis.Google Scholar
Wu, D. and Yotnda, P. (2011). Production and detection of reactive oxygen species (ROS) in cancers. Journal of Visualized Experiments 57, e3357. doi: 10.3791/3357.Google Scholar
Yuengsrigul, A., Chin, T. W. and Nussbaum, E. (1999). Immunosuppressive and cytotoxic effects of furosemide on human peripheral blood mononuclear cells. Annals of Allergy, Asthma & Immunology 83, 559–66. doi: 10.1016/S1081-1206(10)62870-0.Google Scholar