Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T04:34:46.002Z Has data issue: false hasContentIssue false

The antiproteolytic enzyme of Ascaris lumbricoides var. suis

Published online by Cambridge University Press:  06 April 2009

James Henderson Sang
Affiliation:
Department of Zoology, Marischal College, Aberdeen

Extract

1. The inhibitory effect of Ascaris extract on pepsin and trypsin is confirmed. This inhibition is shown not to occur with papain.

2. The inhibitory effect is shown to be brought about by a combination of the anti-enzyme with the enzyme and not by any of the other possible causes.

3. The extract is shown to have a proteolytic as well as an inhibitory action and these two properties are shown to be due to one and the same substance.

4. The term “ascarase” is suggested for this substance.

5. The ascarase is shown to be a readily diffusible substance of the order of a primary albumose, is precipitated by ammonium sulphate and 70% alcohol, is only slowly destroyed in acid but rapidly in alkali and is not digested by trypsin. It combines with the greatest quantities of substrate at pH 5–7.

6. Ascarase is found in the various tissues of the worm in the following order: ovary, oesophagus, gut, body fluid, ovojector, lateral line, uterus and cuticle. A similar order was found for the male.

7. The results found by de Wael (1933) for T. saginata do not apply to Ascaris.

8. The effect of the ascarase on the host and its function in the worm are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balls, A. K. & Swenson, T. L. (1934). J. biol. Chem. 106, 409.CrossRefGoogle Scholar
Bayliss, W. M. (1919). The Nature of Enzyme Action. London.Google Scholar
Buchner, E. & Haehn, H. (1910). Biochem. Z. 26, 171.Google Scholar
Dastre, A. & Stassano, A. (1904). Arch. int. Physiol. 1, 86.Google Scholar
Euler, H. V. (1927). Chemie der Enzyme, pt. 2, p. 492.Google Scholar
Fermi, C. (1910). Zbl. Bakt. 56, 55.Google Scholar
Fetterolf, , Fermi, C.,(1907). Univ. Pa med. Bull. 20, 275.Google Scholar
Fredericq, L. (1933). Bull. Acad. Belg. Cl. Sci. 19, 1017.Google Scholar
Grassman, W. et al. (1930). Hoppe-Seyl. Z. 186, 183.Google Scholar
Hamill, J. M. (1906). J. Physiol. 33, 476.Google Scholar
Harned, B. K. & Nash, T. P. (1932). J. biol. Chem. 97, 443.Google Scholar
Hedin, S. (1912). Hoppe-Seyl. Z. 77, 229.Google Scholar
Hildebrandt, H. (1893). Virchows Arch. 184, 325.CrossRefGoogle Scholar
Hussey, R. G. & Northrop, J. H. (1923). J. gen. Physiol. 5, 335.Google Scholar
Kunitz, N. & Northrop, J. H. (1936). J. gen. Physiol. 19, 991.Google Scholar
Mueller, J. F. (1929). Z. Zellforsch. 8, 361.Google Scholar
Nishimura, K. (1928). J. Chosen med. Ass. 1928, 63.Google Scholar
Northrop, J. H. (1922). J. gen. Physiol. 4, 245.Google Scholar
Northrop, J. H. (1926). J. gen. Physiol. 9, 497.Google Scholar
Pringle, J. H.et al. (1921). Lancet, 1, 807.Google Scholar
Quastel, J. H. (1936). Biochem. Rev. 5, 25.Google Scholar
Sørensen, S. P. L. (1909). Hoppe-Seyl. Z. 64, 120.Google Scholar
Stewart, J. (1932). Rep. Inst. Anim. Path. Univ. Camb. 3, 58.Google Scholar
Tauber, H. (1935). Ergebn. Enzymforsch. 4, 42.Google Scholar
Tauber, H. & Kleiner, J. S. (1931). J. gen. Physiol. 15, 155.CrossRefGoogle Scholar
Thaysen, A. C. (1915). Biochem. J. 9, 110.Google Scholar
Toryu, H. (1936). Sci. Rep. Tôhoku Univ. 10, 687.Google Scholar
Velluz, L. (1927). Bull. Soc. Chim. Biol., Paris, 9, 483.Google Scholar
de Wael, A. (1933). Bull. Acad. Belg. Cl. Sci. 19, 649.Google Scholar
Weinland, E. (1903). Z. Biol. 1, 44.Google Scholar