Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:10:59.739Z Has data issue: false hasContentIssue false

Anti-SAG1 peptide antibodies inhibit the penetration of Toxoplasma gondii tachyzoites into enterocyte cell lines

Published online by Cambridge University Press:  28 November 2001

F. VELGE-ROUSSEL
Affiliation:
UMR UNIVERSITE-INRA d'Immunologie Parasitaire, UFR des Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
I. DIMIER-POISSON
Affiliation:
UMR UNIVERSITE-INRA d'Immunologie Parasitaire, UFR des Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
D. BUZONI-GATEL
Affiliation:
UMR UNIVERSITE-INRA d'Immunologie Parasitaire, UFR des Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
D. BOUT
Affiliation:
UMR UNIVERSITE-INRA d'Immunologie Parasitaire, UFR des Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France

Abstract

The initial attachment of Toxoplasma tachyzoites to the target host cell is an important event in the life-cycle of the parasite and a critical stage in infection. Previous studies have shown that polyclonal antibodies directed against the major surface antigen of Toxoplasma gondii (SAG1) inhibit the infection of enterocyte cell lines. Here, we demonstrate that antibodies raised against a central peptide (V41T) of SAG1 and the SAG1 protein itself are able to inhibit the infection of various cell lines by the tachyzoites. Antibodies directed against SAG1 peptides were used to define a site on the SAG1 antigen that interacts with the host cell. The epitope carried by V41T was identified on the tachyzoite surface by immunofluorescence. The peptide sequence seems to be conserved in all the members of the SAG1 Related Sequence family (SRS). Using undifferentiated and differentiated Caco-2 cells, we found that tachyzoites enter preferentially via the basolateral side of the cell. These findings highlight the role of the SRS family members in the mediation of host cell invasion.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BONHOMME, A., BOUCHOT, B., PEZZELLA, N., GOMEZ, J., LEMOAL, H. & PINON, J. M. (1999). Signaling during the invasion of host cells by Toxoplasma gondii. FEMS Microbiological Review 23, 551561.CrossRefGoogle Scholar
CARRUTHERS, V. B., GIDDINGS, O. K. & SIBLEY, L. D. (1999). Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cellular Microbiology 1, 225235.CrossRefGoogle Scholar
CARRUTHERS, V. B. & SIBLEY, D. L. (1997). Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompagnies invasion of human fibroblasts. European Journal of Cell Biology 73, 114123.Google Scholar
CESBRON-DELAUW, M. F., TOMAVO, S., BEAUCHAMPS, P., FOURMAUX, M. P., CAMUS, D., CAPRON, A. & DUBREMETZ, J. F. (1994). Similarities between the primary structures of two distinct major surface proteins of Toxoplasma gondii. Journal of Biological Chemistry 269, 1621716222.Google Scholar
DEBARD, N., BUZONI-GATEL, D. & BOUT, D. (1996). Intranasal immunization with SAG1 protein of Toxoplasma gondii in association with cholera toxin dramatically reduces development of cerebral cysts after oral infection. Infection and Immunity 64, 21582166.Google Scholar
DUBEY, J. P. (1997). Bradyzoite-induced murine toxoplasmosis: Stage conversion, pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. Journal of Eukaryotic Microbiology 44, 592602.CrossRefGoogle Scholar
DUBEY, J. P., SPEER, C. A., SHEN, S. K., KWOK, O. C. & BLIXT, J. A. (1997). Oocyst-induced murine toxoplasmosis: life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. Journal of Parasitology 83, 870882.CrossRefGoogle Scholar
DUBREMETZ, J.-F. (1998). Host cell invasion by Toxoplasma gondii. Trends in Microbiology 6, 2730.CrossRefGoogle Scholar
DUTTA, C., GRIMWOOD, J. & KASPER, L. H. (2000). Attachment of Toxoplasma gondii to a specific membrane fraction of CHO cells. Infection and Immunity 68, 71987201.CrossRefGoogle Scholar
DZIERSZINSKI, F., MORTUAIRE, M., CESBRON-DELAUW, M. F. & TOMAVO, S. (2000). Targeted disruption of the glycosylphosphatidylinositol-anchored surface antigen SAG3 gene in Toxoplasma gondii decreases host cell adhesion and drastically reduces virulence in mice. Molecular Microbiology 37, 574582.CrossRefGoogle Scholar
FINLAY, B. B. & FALKOW, S. (1988). Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70, 10891099.CrossRefGoogle Scholar
FURTADO, G. C., CAO, Y. & JOINER, K. A. (1992). Laminin on Toxoplasma gondii mediates parasite binding to the beta 1 integrin receptor alpha 6 beta 1 on human foreskin fibroblasts and Chinese hamster ovary cells. Infection and Immunity 60, 49254931.Google Scholar
FURTADO, G. C., SLOWIK, M., KLEINMAN, H. K. & JOINER, K. A. (1992). Laminin enhances binding of Toxoplasma gondii tachyzoites to J774 murine macrophage cells. Infection and Immunity 60, 23372342.Google Scholar
GAILLARD, J.-L. & FINLAY, B. B. (1996). Effect of cell polarization and differentiation on entry of Listeria monocytogenes into enterocyte-like Caco2 cell line. Infection and Immunity 64, 12991308.Google Scholar
GARCIA-REGUET, N., LEBRUN, M., FOURMAUX, M. N., MERCEREAU-PUIJALON, O., MANN, T., BECKERS, C. J., SAMYN, B., VAN BEEUMAN, J., BOUT, D. & DUBREMETZ, J. F. (2000). The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cellular Microbiology 2, 353364.CrossRefGoogle Scholar
GRIMWOOD, J., MINEO, J. R. & KASPER, L. H. (1996). Attachment of Toxoplasma gondii to host cells is host cell cycle dependent. Infection and Immunity 64, 40994104.Google Scholar
GRIMWOOD, J. & SMITH, J. E. (1992). Toxoplasma gondii: The role of 30-kDa surface protein in host cell invasion. Experimental Parasitology 74, 106111.CrossRefGoogle Scholar
GRIMWOOD, J. & SMITH, J. E. (1996). Toxoplasma gondii: the role of parasite surface and secreted proteins in host invasion. International Journal for Parasitology 26, 169173.CrossRefGoogle Scholar
GROSS, U. (1996). Toxoplasma gondii research in Europe. Parasitology Today 12, 14.CrossRefGoogle Scholar
JACOBSON, R. L. & DOYLE, R. J. (1996). Lectin parasite interactions. Parasitology Today 12, 5561.CrossRefGoogle Scholar
KASPER, L. H. (1987). Isolation and characterization of a monoclonal anti-P30 antibody resistant mutant of Toxoplasma gondii. Parasite Immunology 9, 433445.CrossRefGoogle Scholar
LUFT, B. J. & REMINGTON, J. S. (1992). Toxoplasmic encephalitis in AIDS. Clinical Infectious Diseases 15, 211222.CrossRefGoogle Scholar
MANGER, I. D., HEHL, A. B. & BOOTHROYD, J. C. (1998). The surface of Toxoplasma tachyzoites is dominated by a family of glycosylphosphatidylinositol-anchored antigens related to SAG1. Infection and Immunity 66, 22372244.Google Scholar
MINEO, J. R. & KASPER, L. H. (1994). Attachment of Toxoplasma gondii to host cells involves major surface protein, SAG-1 (P30). Experimental Parasitology 79, 1120.CrossRefGoogle Scholar
MINEO, J. R., MCLEOD, R., MACK, D., SMITH, J., KHAN, I. A., ELY, K. H. & KASPER, L. H. (1993). Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection. Journal of Immunology 150, 39513964.Google Scholar
MORISAKI, J. H., HEUSER, J. E. & SIBLEY, L. D. (1995). Invasion of Toxoplasma gondii occurs by active penetration of the host cell. Journal of Cell Science 108, 24572464.Google Scholar
MOUNIER, J., VASSELON, T., HELLIO, R., LESOURD, M. & SANSONETTI, P. (1992). Shigella flexneri enters human colonic Caco2 epithelial cells through the basolateral pole. Infection and Immunity 60, 237248.Google Scholar
ORTEGA-BARRIA, E. & BOOTHROYD, J. C. (1999). A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. Journal of Biological Chemistry 274, 12671276.CrossRefGoogle Scholar
PFEFFERKORN, E. R. & PFEFFERKORN, L. C. (1977). Specific labelling of intracellular Toxoplasma gondii with uracil. Journal of Protozoology 24, 449453.CrossRefGoogle Scholar
QUARONI, A., WANDS, J., TRELSTAD, R. L. & ISSELBACHER, K. J. (1979). Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. Journal of Cellular Biology 80, 248265.Google Scholar
ROBERT-GANGNEUX, F., CREUZET, C., DUPOUY-CAMET, J. & ROISIN, M. P. (2000). Involvement of the mitogen-activated protein (MAP) kinase signalling pathway in host cell invasion by Toxoplasma gondii. Parasite 7, 95101.CrossRefGoogle Scholar
SILVERMAN, J. A. & JOINER, K. (1997). Toxoplasma host–cell interaction. In Host Responses to Intracellular Pathogens (ed. KAUFMANN, S.), pp. 313338. R.G. Landes Compagny Springer-Verlag GMBH & Co KG, New York.
SMITH, J. E. (1995). A ubiquitous intracellular parasite: the cellular biology of Toxoplasma gondii. International Journal for Parasitology 25, 13011309.CrossRefGoogle Scholar
SPEER, C. A. & DUBEY, J. P. (1998). Ultrastructure of early stages of infections in mice fed Toxoplasma gondii oocysts. Parasitology 116, 3542.CrossRefGoogle Scholar
SPEER, C. A., DUBEY, J. P., BLIXT, J. A. & PROKOP, K. (1997). Time lapse video microscopy and ultrastructure of penetrating sporozoites, types 1 and 2 parasitophorous vacuoles, and the transformation of sporozoites to tachyzoites of the VEG strain of Toxoplasma gondii. Journal of Parasitology 83, 565574.CrossRefGoogle Scholar
VELGE, P., BOTTREAU, E., VAN-LANGENDONCK, N. & KAEFFER, B. (1997). Cell proliferation enhances entry of Listeria monocytogenes into intestinal epithelial cells by two proliferation-dependent entry pathways. Journal of Medical Microbiology 46, 681692.CrossRefGoogle Scholar
VELGE-ROUSSEL, F., CHARDÈS, T., MEVELEC, P., BRILLARD, M., HOEBEKE, J. & BOUT, D. (1994). Epitopic analysis of the Toxoplasma gondii major surface antigen SAG1. Molecular and Biochemical Parasitology 66, 3138.CrossRefGoogle Scholar
VELGE-ROUSSEL, F., MORETTO, M., BUZONI-GATEL, D., DIMIER-POISSON, I., FERRER, M., HOEBEKE, J. & BOUT, D. (1997). Differences in immunological response to a T. gondii protein (SAG1) derived peptide between two strains of mice: effect on protection in T. gondii infection. Molecular Immunology 34, 10451053.Google Scholar
VERCAMMEN, M., SCORZA, T., ELBOUHDIDI, A., VANBEECK, K., CARLIER, Y., DUBREMETZ, J. F. & VERSCHUEREN, H. (1999). Opsonization of Toxoplasma gondii tachyzoites with nonspecific immunoglobulins promotes their phagocytosis by macrophages and inhibits their proliferations in nonphagocytic cells in tissue culture. Parasite Immunology 21, 555563.CrossRefGoogle Scholar
VIDAL, K., GROSJEAN, I., EVILLARD, J. P., GESPACH, C. & KAISERLIAN, D. (1993). Immortalization of mouse intestinal epithelial cells by the SV40-large T gene. Phenotypic and immune characterization of the MODE-K cell line. Journal of Immunological Methods 166, 6373.CrossRefGoogle Scholar
VIEIRA, M. C. & MORENO, S. N. (2000). Mobilization of intracellular calcium upon attachment of Toxoplasma gondii tachyzoites to human fibroblasts is required for invasion. Molecular and Biochemical Parasitology 106, 157162.CrossRefGoogle Scholar
WOODMAN, J. P., DIMIER, I. H. & BOUT, D. T. (1991). Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts. Journal of Immunology 147, 20192023.Google Scholar
ZWEIBAUM, A., LABURTHE, M., GRASSEET, E. & LOUVARD, D. (1991). Intestinal transport of the gastrointestinal system. In Handbook of Physiology, Vol. IV (ed. FIELD, M. & FRIZZERL, R. A.), pp. 225255. American Physiology Society, Oxford University Press, Oxford and New York.