Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T15:01:45.211Z Has data issue: false hasContentIssue false

Biochemical characteristics of the metacyclic forms of Leishmania major and L. mexicana mexicana

Published online by Cambridge University Press:  06 April 2009

D. J. Mallinson
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ, Scotland
G. H. Coombs
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ, Scotland

Summary

Metacyclic forms of Leishmania major and putative metacyclics of L. mexicana mexicana were found to occur in abundance in stationary phase cultures. These forms have been compared in several ways with promastigotes from mid-log phase cultures and, in the case of L. m. mexicana, amastigotes. Metacyclics are smaller, contain less protein and appear more active than other promastigotes. Both forms of promastigote respire at a high rate in the absence of exogenous substrate. The free amino-acid contents of the various forms of the two species have been analysed. They differ in detail but alanine was the major amino acid in all cases. The isoenzyme content of the different forms differed significantly. That of the putative metacyclics of L. m. mexicana was in several respects more similar to amastigotes than promastigotes, suggesting that the form is pre-adapted for life in a mammal. Metacyclics of L. major apparently did not divide in culture but transformed back over a period of 48 h to mid-log phase cells. The results provide further detail of the molecular differences between mid-log phase and metacyclic promastigotes and confirm that metacyclics are a distinct form in the life-cycle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berens, R. L., Brun, R. & Krassner, S. (1976). A simple monophasic medium for axenic culture of hemoflagellates. Journal of Parasitology 62, 360–5.CrossRefGoogle ScholarPubMed
Blum, J. J., Davis, D. G., Darling, T. N. & London, R. E. (1988). Interrelations between glucose and alanine catabolism, ammonia production, and the D-lactate pathway in Leishmania braziliensis. In NATO ASI Series. Leishmaniasis (ed. Hart, D. T.). New York: Plenum. (In the Press.)Google Scholar
Capaldo, J. & Coombs, G. H. (1983). New approaches to the chemotherapy of leishmaniasis. Parasitology 87, xl.Google Scholar
Darcy, F., Torpier, G., Kusnierz, J. P., Rizvi, F. S. & Santoro, F. (1987). Leishmania chagasi: in vitro differentiation of promastigotes monitored by flow cytometry. Experimental Parasitology 64, 376–84.CrossRefGoogle ScholarPubMed
Darling, T. N., Davis, D. G., London, R. E. & Blum, J. J. (1987). Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. Proceedings of the National Academy of Science, USA 84, 7129–33.CrossRefGoogle ScholarPubMed
Das, S., Saha, A. K., Mukhopadhyay, N. K. & Glew, R. H. (1986). A cyclic nucleotide-independent protein kinase in Leishmania donovani. The Biochemical Journal 240, 641–9.CrossRefGoogle ScholarPubMed
Da Silva, R. & Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attentuation. Infection and Immunity 55, 2802–6.CrossRefGoogle Scholar
Doran, T. I. & Herman, R. (1981). Characteristics of populations of promastigotes of Leishmania donovani. Journal of Protozoology 28, 345–50.CrossRefGoogle Scholar
Franke, E. D., McGreevy, P. B., Katz, S. P. & Sacks, D. L. (1985). Growth cycle-dependent generation of complement-resistant Leishmania promastigotes. Journal of Immunology 134, 2713–18.CrossRefGoogle ScholarPubMed
Giannini, M. S. H. (1974). Effects of promastigote growth phase, frequency of subculture and host age on promastigote initiated infections with Leishmania donovani in the Golden hamster. Journal of Protozoology 21, 521–7.CrossRefGoogle ScholarPubMed
Grogl, M., Franke, E. D. & McGreevy, P. B. (1987). Leishmania braziliensis: protein, carbohydrate and antigen differences between log phase and stationary phase promastigotes in vitro. Experimental Parasitology 62, 352–9.CrossRefGoogle Scholar
Harris, H. & Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics. Amsterdam: North-Holland Publishing Co.Google Scholar
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981 a). A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology 82, 345–55.CrossRefGoogle ScholarPubMed
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981 b). Respiration of Leishmania mexicana amastigotes and promastigotes. Molecular and Biochemical Parasitology 4, 3951.CrossRefGoogle Scholar
Howard, M. K., Sayers, G. & Miles, M. A. (1987). Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Experimental Parasitology 64, 147–56.CrossRefGoogle ScholarPubMed
Keithly, J. S. & Bienin, E. J. (1981). Infectivity of Leishmania donovani primary culture promastigotes for golden hamsters. Acta Tropica 38, 85–9.Google ScholarPubMed
Killick-Kendrick, R. (1979). Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida (ed. Lumsden, W. R. H. and Evans, D. A.), vol. 2 pp. 395460. London: Academic Press.Google Scholar
Killick-Kendrick, R. (1986). The transmission of leishmaniasis by the bite of the sandfly. Journal of the Royal Army Medical Corps 132, 134–40.CrossRefGoogle Scholar
Killick-Kendrick, R. (1987). The microecology of Leishmania in the gut and proboscis of the sandfly. In Host-Parasite Cellular and Molecular Interactions in Protozoal Infections (ed. K.-P., Chang and Snary, D.), pp. 397406. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
King, D. L., Chang, Y.-D. & Turco, S. J. (1987). Cell surface lipophosphoglycan of Leishmania donovani. Molecular and Biochemical Parasitology 24, 4753.CrossRefGoogle ScholarPubMed
Kweider, M., Lemesre, J.-L., Darcy, F., Kusnierz, J. P.Capron, A. & Santoro, F. (1987). Infectivity of Leishmania braziliensis promastigotes is dependent on the increasing expression of a 65,000-dalton surface antigen. Journal of Immunology 138, 299305.CrossRefGoogle ScholarPubMed
Lawyer, P. G., Young, D. G., Butler, J. F. & Akin, D. E. (1987). Development of Leishmania mexicana in Lutzomyia diabolica and Lutzomyia shannoni (Diptera: Psychodidae). Journal of Medical Entomology 24, 347–55.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Mallinson, D. J. & Coombs, G. H. (1986). Molecular characterisation of the metacyclic forms of Leishmania. IRCS Medical Science 14, 557–8.Google Scholar
Misset, O., Bos, O. J. M. & Opperdoes, F. R. (1986). Glycolytic enzymes of Trypanosoma brucei. Simultaneous purification, intraglycosomal concentrations and physical properties. European Journal of Biochemistry 157, 441–53.CrossRefGoogle ScholarPubMed
Mosser, D. M., Burke, S. K., Coutavas, E. E., Wedgewood, J. F. & Edelson, P. J. (1986). Leishmania species: mechanisms of complement activation by five strains of promastigotes. Experimental Parasitology 62, 394404.CrossRefGoogle ScholarPubMed
Mottram, J. C. & Coombs, G. H. (1985 a). Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Experimental Parasitology 59, 151–60.CrossRefGoogle ScholarPubMed
Mottram, J. C. & Coombs, G. H. (1985 b). Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Experimental Parasitology 59, 365–74.Google Scholar
Puentes, S. M., Sacks, D. L., Da Silva, R. P. & Joiner, K. A. (1988). Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan. Journal of Experimental Medicine 167, 887902.CrossRefGoogle ScholarPubMed
Rizvi, F. S., Afchain, D., Sherlock, I., Sadigursky, M., Capron, A. & Santoro, F. (1985). Infectivity of Leishmania promastigotes is associated with surface antigenic expression. Immunology Letters 11, 317–23.CrossRefGoogle ScholarPubMed
Robinson, J. & Cooper, J. M. (1970). Method of determining oxygen concentrations in biological media suitable for calibration of the oxygen electrode. Analytical Biochemistry 33, 390–9.CrossRefGoogle ScholarPubMed
Sacks, D. L. & Da Silva, R. P. (1987). The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. Journal of Immunology 139, 3099–106.CrossRefGoogle ScholarPubMed
Sacks, D. L., Hieny, S. & Sher, A. (1985). Identification of cell surface carbohydrate and antigen changes between non-infective and infective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564–9.CrossRefGoogle Scholar
Sacks, D. L. & Perkins, P. V. (1984). Identification of an infective stage of Leishmania promastigotes. Science 223, 1417–19.CrossRefGoogle ScholarPubMed
Sacks, D. L. & Perkins, P. V. (1985). Development of infective stage Leishmania promastigotes within phlebotomine sandflies. American Journal of Tropical Medicine and Hygiene 34, 456–9.CrossRefGoogle Scholar
Scott, P. & Sher, A. (1986). A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages. Journal of Immunology 136, 141–6.Google ScholarPubMed
Simon, M. W., Jayasimhulu, K. & Mukkada, A. J. (1983). The free amino acid pool in Leishmania tropica promastigotes. Molecular and Biochemical Parasitology 9, 4757.CrossRefGoogle ScholarPubMed
Warburg, A., Hamada, G. S., Schlein, Y. & Shire, D. (1986). Scanning electron microscopy of Leishmania major in Phlebotomus papatasi. Zeitschrift für Parasitenkunde 72, 423–31.CrossRefGoogle ScholarPubMed
Williams, G. T. (1983). Trypanosoma cruzi: inhibition of intracellular and extracellular differentiation by ADP-ribosyl transferase antagonists. Experimental Parasitology 56, 409–15.CrossRefGoogle ScholarPubMed
Williams, G. T. (1984). Specific inhibition of the differentiation of Trypanosoma cruzi. Journal of Cell Biology 99, 7982.CrossRefGoogle ScholarPubMed
Wozencraft, A. O. & Blackwell, J. M. (1987). Increased infectivity of stationary-phase promastigotes of Leishmania donovani: correlation with enhanced C3 binding capacity and CR3-mediated attachment to host macrophages. Immunology 60, 559–63.Google ScholarPubMed