Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T01:27:03.388Z Has data issue: false hasContentIssue false

The Biology of Autogenous and Anautogenous Races of Culex pipiens L. (Diptera: Culicidae)1

Published online by Cambridge University Press:  06 April 2009

P. Tate
Affiliation:
From the Molteno Institute, University of Cambridge
M. Vincent
Affiliation:
From the Molteno Institute, University of Cambridge

Extract

1. An English anautogenous race and three European strains of the autogenous race of Culex pipiens have been studied comparatively for 3 years under laboratory conditions.

2. Prolonged illumination has an activating influence on females of the anautogenous race, both hibernating and laboratory bred, and greatly stimulates gorging.

3. With the aid of artificial light during the winter months the anautogenous race has been kept breeding in the laboratory throughout the year for eleven generations without the occurrence of cyclical hibernation (asthenobiosis). Consequently it is suggested that the length of daylight may be a factor of importance in controlling the natural hibernation of females of this race.

4. Females of the English anautogenous race, whether of hibernating, or of active generations, laid normally after one blood meal and did not exhibit gonotrophic dissociation. They also oviposited readily after being artificially fed on bird blood.

5. Unfed females lived for a maximum of 19 days and never accumulated fat-body autotrophically.

6. Females, if fed on apple for 5 weeks, accumulated sufficient reserves to enable a small percentage of them to survive 15 weeks of starvation.

7. In the anautogenous race pairing always begins in the air although it may be completed on the ground. The females do not lay without a blood meal, and they show little tendency to bite man but bite birds voraciously.

8. Strains of the autogenous race of C. pipiens were obtained from rural areas in Greece, Malta and Hungary and have been maintained in the laboratory for over 3 years.

9. Continuous breeding under autogenous conditions (no blood meals) for several years and through forty-five to forty-nine generations has had no deleterious eflect on these autogenous strains.

10. Spanogyny, or the gradual decrease in the numbers of females produced in succeeding generations, does not necessarily follow prolonged autogeny if the cultures are kept under favourable conditions.

11. Males of the autogenous race pair with resting females, so that pairing can take place in very small areas.

12. Cross-mating was easily obtained between the two races, autogenous and anautogenous, in both directions: male autogenous + female anautogenous; and male anautogenous + female autogenous. Stenogamy and autogeny are hereditary characters. Stenogarny always appears in the F1 generation, but autogeny sometimes appears in the F1 generation and sometimes not until the F2 generation.

13. Eggs are quickly killed by temperatures below freezing-point; and young larvae die within 24 hours at 0° C. Adults, even hibernating females, die within 4 days at −16° C.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1936

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bolssezon, P. De (1929). Remarques sur les conditions de la reproduction chez Culex pipiens L. pendant la période hivernale. Bull. Soc. Path. exot. 22, 549–53.Google Scholar
Bolssezon, P. De (1929 a). Expériences au sujet de la maturation des ceufs chez les Culicidés. Bull. Soc. Path. exot. 22, 683–9.Google Scholar
Bolssezon, P. De (1930). Influence de la temperature sur la biologie des Culicidés. Bull. Soc. zool. Fr. 55, 255–61.Google Scholar
Bolssezon, P. De (1930 a). Contribution à l'étude de la biologie et de l'histophysiologie de Culex pipiens L. Arch. Zool. exp. gén. 70, 281431.Google Scholar
Bolssezon, P. De (1933). De l'utilisation des protéines et du fer d'origine végétale dam la maturation des ceufs chez Culex pipiens L. C.R. Soc. Biol., Paris, 114, 487–9.Google Scholar
Bolssezon, P. De (1934). Nouvelles expériences sur la biologie de Culex pipiens L. Ann. Parasit. hum. comp. 12, 182–92.CrossRefGoogle Scholar
Buck, A. De (1935). Beitrag zur Rassenfrage bei Culex pipiens. Z. angew. Eat. 22, 242–52.Google Scholar
Buck, A. De and Swellengrebel, N. H. (1934). Behaviour of Dutch Anopheles atroparvus and messeae in winter under artificial conditions. Riv. Malariol. 13, 404–16.Google Scholar
Face, L. La (1926). Ricerche sulla biologia del Culex pipiens. L'alimentazione e l'ibemamento. Riv. Malariol. 5, 132–56.Google Scholar
Grassi, B. (1923). Razze biologiche differenti di Culex pipiens. R.C. Accad. Lincei, 32, 457–64.Google Scholar
Hecht, O. (1932). Experimentelle Beiträge zur Biologie der Steckmücken. II. Z. angew. Ent. 19, 579607.CrossRefGoogle Scholar
Huff, C. G. (1929). Ovulation requirements of Culex pipiens. Biol. Bull. Wood's Hole, 56, 347–50.Google Scholar
Jobling, B. (1935). The effect of light and darkness on oviposition in mosquitoes. Trans. R. Soc. trop. Med. Hyg. 29, 157–66.Google Scholar
Legendre, J. (1928). La psychologie de Culex pipiens. C.R. Acad. Sci., Paris, 187, 774–6.Google Scholar
Legendre, J. (1931). Le moustique cavermcole ou l'adaptation de C. pipiens à I'urbanisme moderne. Bull. Acad. Méd., Paris, 106, 86–9.Google Scholar
Legendre, J. (1931 a). Le moustique stercoraire. Bull. Acad. Méd. 106, 276–80.Google Scholar
Legendre, J. (1932). Androphilie ou zoophilie chez le moustique commun Culex pipiens. Bull. Acad. Méd. 107, 317–20.Google Scholar
MacGregor, M. E. (1930). The artificial feeding of mosquitoes by a new method which demonstrates certain functions of the diverticula. Trans. R. Soc. trop. Med. Hyg. 23, 329–31.Google Scholar
MacGregor, M. E. (1931). The nutrition of adult mosquitoes. Preliminary contribution. Trans. R. Soc. trop. Med. Hyg. 24, 465–72.Google Scholar
MacGregor, M. E. (1932). The occurrence of Roubaud's “Race autogbne” in a German strain of Culex pipiens in England: with notes on rearing and bionomics. Trans. R. Soc. trop. Med. Hyg. 26, 307–14.Google Scholar
MacGregor, M. E. and Chung, Un Lee (1929). Preliminary note on the artificial feeding of mosquitoes. Trans. R. Soc. trop. Med. Hyg. 23, 203–4.CrossRefGoogle Scholar
Marshall, J. F. and Staley, J. (1935). Exhibition of “autogenous” characteristics by a British strain of Culex pipiens L. (Diptera, Culicidae). Nature, Lond., 135, 34.Google Scholar
Marshall, J. F. and Staley, J. (1935). Some adult and larval characteristics of a British “autogenous” strain of Culex pipiens L. Parasitology, 27, 501–6.CrossRefGoogle Scholar
Neumann, R. O. (1912). Brauchen die Steckmücken zur Reifung ihrer Eier Blut als Nahrung? Arch. Schiffs- u. Tropenhyg. 16, 2730.Google Scholar
Nieschulz, O. and Bos, A. (1931). Einige Versuche mit überwinternden Exemplaren von Culex pipiens. Zbl. Bakt. ii, 84, 364–8.Google Scholar
Roubaud, E. (1929). Cycle autogéne d'attente et générations hivernales suractives in-apparentes chez le moustique commun Culex pipiens. C.R. Acad. Sci., Paris, 188,735–8.Google Scholar
Roubaud, E. (1930). Suspension évolutive et hivernation larvaire obligatoire provoquées par la chaleur, chez le moustique commun, Culex pipiens L. Les diapauses vraies et les pseudo-diapauses chez les insectes. C.R. Acad. Sci. 190, 324–6.Google Scholar
Roubaud, E. (1930 a). Sun l'existence de races biologiques génétiquement distinctes chez le moustique commun Culex pipiens. C.R. Acad. Sci. 191, 1386–8.Google Scholar
Roubaud, E. (1931). Sur l'autogénése chez Culex pipiens. Bull. Soc. Path. exot. 24, 384–7.Google Scholar
Roubaud, E. (1931 a). Les phénomènes d'histolyse larvaire postnymphale et d'alimentation imaginale autotrophe chez le moustique commun Culex pipiens. C.R. Acad. Sci., Paris, 194, 389–91.Google Scholar
Roubaud, E. (1933). Essai synthétique sur la vie du moustique commun (Culex pipiens). L'évolution humaine et les adaptations biologiques du moustique. Ann. Sci. nat. 16, 5168.Google Scholar
Roubaud, E. (1934). Au sujet des différenciations raciales chez le moustique commun Culex pipiens L. Ann. Parasit. hum. camp. 10, 337–9.CrossRefGoogle Scholar
Roubaud, E. (1935). La microstructure du flotteur de l'ceuf dans les races biologiques de Culex pipiens L. Bull. Soc. Path. exot. 28, 443–5.Google Scholar
Roubaud, E. and Gaschen, H. (1932). Différenciation des races biologiques de Culex pipiens L. par l'adaptation larvaire aux milieux ammoniacaux. Bull. Soc. Path. exot. 25, 1053–8.Google Scholar
Roubaud, E. and Mezger, J. (1934). La nourriture larvaire n'influe pas sur le développement de l'autogénèse chez les races de Culex pipiens specifiquement anautogènes. Ann. Parasit. hum. comp. 12, 340–2.CrossRefGoogle Scholar
Roubaud, E. and Mezger, J. (1934 a). Influence du sang d'oiseau sur la fécondité du moustique commun, Culex pipiens L. Bull. Soc. Path. exot. 27, 666–8.Google Scholar
Roubaud, E. and Toumanoff, C. (1930). Intoxications d'encombrement, chez les larves de Culex vivant en milieu non-renouvelé. Bull. Soc. Path. exot. 23, 978–86.Google Scholar
Roubaud, E. and Toumanoff, C. (1930 a). Sur une race physiologique suractive du moustique commun Culex pipiens L. Bull. Soc. Path. exot. 23, 196201.Google Scholar
Tate, P. and Vincent, M. (1932). Influence of light on the gorging of Culex pipiens L. Nature, Lond., 130, 366.Google Scholar
Tate, P. and Vincent, M. (1934). The susceptibility of autogenous and anautogenous races of Culex pipiens to infection with avian malaria (Plasmodium relictum). Parasitology, 26, 512–22.Google Scholar
Taylor, M. (1914). The chromosome complex of Culex pipiens. Quart. J. micr. Sci. 60, 377–98.Google Scholar
Taylor, M. (1917). The chromosome complex of Culex pipiens. Part II. Fertiisation. Quart. J. micr. Sci. 62, 287301.Google Scholar
Vincent, M. (1933). Some observations on the biology of a Hungarian strain of Culex pipiens L. Arb. ung. Biol. ForschInst. 6, 119–22.Google Scholar
Wesenberg-Lund, C. (19201921). Contributions to the biology of the Danish Culicidae. Mém. Acad. B. Sci. Lett. Danemark, Sec. Sci., 8me sér. 7, 210 pp.Google Scholar
Weyer, F. (1934). Der Einfluss der Larvalernährung auf die Fortpflanzungsphysiologie verschiedner Steckmücken. Arch. Schiffs- u. Tropenhyg. 38, 394–8.Google Scholar
Weyer, F. (1934 a). Versuche zur Eiablage ohne vorherige Blutnahrung bei Culex pipiens L. Verh. dtsch. zool. Ges. 36, 146–52.Google Scholar
Woodcock, H. M. (1914). On Crithidia fasciculata in hibernating mosquitoes (Culex pipiens) and the question of the connection of this parasite with a Trypanosome. Zool. Anz. 43, 370–82.Google Scholar