Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T11:34:10.641Z Has data issue: false hasContentIssue false

Biomembrane structure and function: recent studies and new techniques

Published online by Cambridge University Press:  23 August 2011

D. Chapman
Affiliation:
Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF

Summary

The consensus view of biomembrane structure is outlined. The present model is built upon a fluid lipid matrix, usually two molecules in length, into which the proteins are embedded. The lipid bilayer organization is discussed, such as their phase transition and fluid character and the effect of cholesterol upon the chain organization. The non-lamellar arrangement which some lipids adopt is described. The use of new physical techniques for obtaining information about the structure and dynamics of membrane proteins are described. These techniques include electron diffraction, electron microscopy and FTIR spectroscopy. Models of the structures of the Ca2+–ATPase and the glucose transporter from erythrocytes are shown, indicating the putative helices embedded in the lipid bilayer and the groups of amino acids in the aqueous environment. These models are based upon biochemical methods to obtain amino acid sequences using DNA cloning techniques. Finally, an experimental method using triplet probes is described for the study of the rotational dynamics of membrane proteins. Labelled monoclonal antibodies for studying the dynamics of the glucose transporter have been used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, J., Lee, D. C., Baldwin, S. A. & Chapman, D. (1987). Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. Journal of Biological Chemistry 262, 3502–9.CrossRefGoogle ScholarPubMed
Asher, J. M. & Levin, I. W. (1977). Effects of temperature and molecular interactions on the vibrational infrared spectra of phospholipid vesicles. Biochimica et Biophysica Acta 468, 6372.Google Scholar
Blaurock, A. (1975). Bacteriorhodopsin: a transmembrane pump containing α-helix. Journal of Molecular Biology 93, 139–57.Google Scholar
Brandl, C. J., Green, N. M., Korczak, B. & MacLennan, D. M. (1986). Two Ca 2+-ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44, 597607.Google Scholar
Bretscher, M. (1973). Membrane structure: Some general principles. Science 181, 622–9.CrossRefGoogle ScholarPubMed
Cameron, D. G., Casal, H. L. & Mantsch, H. H. (1980). Characterization of the pretransition in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine by fourier transform infrared spectroscopy. Biochemistry 19, 3665–72.Google Scholar
Chapman, D. & Penket, S. A. (1966). NMR spectroscopic studies of the interaction of phospholipids with cholesterol. Nature, London 211, 1304–5.CrossRefGoogle Scholar
Chapman, D. & Urbina, J. (1971). Phase transition and bilayer structure of Mycoplasma laidlawii B. FEBS Letters 12, 169–72.Google Scholar
Chapman, D., Owen, N., Phillips, M. & Walker, D. (1969). Mixed monolayers of phospholipids and cholesterol. Biochimica et Biophysica Acta 183, 458–65.Google Scholar
Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G. & Parish, G. R. (1976). Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature, London 263, 389–93.CrossRefGoogle ScholarPubMed
Cone, R. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature, London 236, 3943.Google ScholarPubMed
Cortijo, M. & Chapman, D. (1981). A comparison of the interactions of cholesterol and gramicidin A with lipid bilayers using an Infrared data Station. FEBS Letters 131, 245–7.CrossRefGoogle Scholar
Cortijo, M., Alonso, A., Gomez-Fernandez, J. & Chapman, D. (1982). Intrinsic protein-lipid interactions. Infrared spectroscopic studies of gramicidin A, bacteriorhodopsin and Ca2+-ATPase in biomembranes and reconstituted systems. Journal of Molecular Biology 157, 597618.Google Scholar
Cullis, P. R. & De Kruijff, B. (1978). The polymorphic phase behaviour of phosphatidyl-ethanolamines of natural and synthetic origin: A 31P NMR study. Biochimica et Biophysica Acta 513, 3142.Google Scholar
Cullis, P. R. & De Kruijff, B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta 559, 399420.CrossRefGoogle ScholarPubMed
Deatherage, J. F., Henderson, R. & Capaldi, R. A. (1982 a). Three-dimensional structures of cytochrome C oxidase vesicle crystals in negative stain. Journal of Molecular Biology 158, 487–99.Google Scholar
Deatherage, J. F., Henderson, R. & Capaldi, R. A. (1982 b). Relationship between membrane and cytoplasmic domains in cytochrome C oxidase by electron microscopy in media of different density. Journal of Molecular Biology 158, 501–14.CrossRefGoogle ScholarPubMed
Di Rienzo, J., Nakamur, K. & Inouye, M. (1978). The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly and functions. Annual Review of Biochemistry 47, 481532.CrossRefGoogle ScholarPubMed
Dorset, D. L., Engel, A., Massalski, A. & Rosenbusch, J. P. (1983). Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. Journal of Molecular Biology 165, 701–10.CrossRefGoogle Scholar
Dorset, D. L., Engel, A., Massalski, A. & Rosenbusch, J. P. (1984). Three-dimensional structure of a membrane pore. Electron microscopical analysis of Escherichia coli outer membrane matrix porin. Biophysical Journal 45, 128–9.Google Scholar
Dux, L. & Martonosi, A. (1983 a). Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion. Journal of Biological Chemistry 258, 10111–15.Google Scholar
Dux, L. & Martonosi, A. (1983 b). The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. Journal of Biological Chemistry 258, 11896–902.Google Scholar
Engelman, D., Henderson, R., McLachlan, A. & Wallace, B. (1980). Path of the polypeptide in bacteriorhodopsin. Proceedings of the National Academy of Sciences, USA 77, 2023–7.Google Scholar
Fidelio, G. D., Austen, B. M., Chapman, D. & Lucy, J. A. (1986). Properties of signal-sequence peptides at an air-water interface. Biochemical Journal 238, 301–4.Google Scholar
Fidelio, G. D., Austen, B. M., Chapman, D. & Lucy, J. A. (1987). Interactions of ovalbumin and of its putative signal sequence with phospholipid monolayers. Biochemical Journal 224, 295301.Google Scholar
Garavito, R. M., Jenkins, J., Jansonius, J. N., Karlsson, R. & Rosenbusch, J. P. (1983). X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. Journal of Molecular Biology 164, 313–27.Google Scholar
Garavito, R. M. & Rosenbusch, J. P. (1980). Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis. Journal of Cell Biology 86, 327–9.CrossRefGoogle ScholarPubMed
Hayward, S. & Stroud, R. (1981). Projected structure of purple membrane determined to 3.7A resolution by low temperature electron microscopy. Journal of Molecular Biology 151, 491517.Google Scholar
Henderson, R. (1975). The structure of the purple membrane from Halobacterium halobium: analysis of the X-ray diffraction pattern. Journal of Molecular Biology 93, 123–8.Google Scholar
Henderson, R. & Shotton, D. (1980). Crystallization of purple membrane in three dimensions. Journal of Molecular Biology 139, 99109.Google Scholar
Henderson, R. & Unwin, P. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature, London 257, 2832.Google Scholar
Hoffman, W. & Restall, C. (1983). Rotational and lateral diffusion of membrane proteins as determined by laser techniques. In Biomembrane Structure and Function (ed. Chapman, D.), pp. 257318. London: Macmillan.CrossRefGoogle Scholar
Hoffman, W., Sarzala, M. & Chapman, D. (1979). Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+-activated ATPase. Proceedings of the National Academy of Sciences, USA 76, 3860–4.Google Scholar
Jackson, M. B. & Sturtevant, J. M. (1978). Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry 17, 911–15.CrossRefGoogle ScholarPubMed
Jap, B. K., Maestre, M. F., Hayward, S. B. & Glaeser, R. M. (1983). Peptide-chain secondary structure of bacteriorhodopsin. Biophysical Journal 43, 81–9.CrossRefGoogle ScholarPubMed
Khorana, H. G., Gerber, G. E., Herlihy, W. C., Gray, C. P., Andregg, R. J., Bienmann, K. & Nihei, K. (1979). Amino acid sequence of bacteriorhodopsin. Proceedings of the National Academy of Sciences, USA 76, 5046–50.Google Scholar
Kistler, J. & Stroud, R. (1981). Crystalline arrays of membrane-bound acetylcholine receptor. Proceedings of the National Academy of Sciences, USA 78, 3678–82.Google Scholar
Kistler, J., Stroud, R., Klymkowsky, M., Lalancette, R. & Fairclough, R. (1982). Structure & function of an acetylcholine receptor. Biophysical Journal 37, 731–83.CrossRefGoogle ScholarPubMed
Klymkowsky, M. W. & Stroud, R. M. (1979). Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. Journal of Molecular Biology 128, 319–34.Google Scholar
Krimm, S. & Dwivedi, A. M. (1982). Infrared spectrum of the purple membrane: clue to a proton conduction mechanism ? Science 216, 407–8.Google Scholar
Lee, D. C. & Chapman, D. (1986). Infrared spectroscopic studies of biomembranes and model membranes. Bioscience Reports 6, 235–56.Google Scholar
Lee, D. C., Elliot, D. A., Baldwin, S. A. & Chapman, D. (1985 a). The structure of the human erythrocyte glucose transporter: an investigation by infrared spectroscopy. Biochemical Society Transactions 13, 684–5.CrossRefGoogle Scholar
Lee, D. C., Hayward, J. A., Restall, C. J. & Chapman, D. (1985 b). Second-derivative infrared spectroscopic studies of biomembranes. Biochemistry 24, 4364–73.CrossRefGoogle Scholar
Liao, M. J., London, E. & Khorana, H. G. (1983). Regeneration of the native bacteriorhodopsin structure from two chromotryptic fragments. Journal of Biological Chemistry 258, 9949–55.Google Scholar
Luzzati, V. & Husson, F. (1962). The structure of the liquid-crystalline phases of lipid-water systems. Journal of Cell Biology 12, 207–19.Google Scholar
MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. (1985). Amino acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.Google Scholar
Mendelsohn, R., Anderle, G., Jaworsky, M., Mantsch, H. H. & Dluhy, R. A. (1984). Fourier transform infrared spectroscopic studies of lipid-protein interaction in native and reconstituted sarcoplasmic reticulum. Biochimica et Biophysica Acta 775, 215–24.Google Scholar
Mendelson, R., Dluhy, R. A., Crawford, T. & Mantsch, H. H. (1984). Interaction of glycophorin with phosphatidylserine: a fourier transform infrared investigation Biochemistry 23, 1498–504.Google Scholar
Michel, H. (1982). Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. Journal of Molecular Biology 158, 567–72.Google Scholar
Michel, H. (1983). Crystallization of membrane proteins. Trends in Biochemical Science 8, 56–9.Google Scholar
Michel, H. & Oesterhelt, D. (1980). Three-dimensional crystals of membrane proteins: Bacteriorhodopsin. Proceedings of the National Academy of Sciences, USA 77, 1283–5.Google Scholar
Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E. & Lodish, H. F. (1985). Sequence and structure of a human glucose transporter. Science 229, 941–5.CrossRefGoogle ScholarPubMed
Murray, E., Restall, C. & Chapman, D. (1983). Monitoring membrane protein rotational diffusion using time-averaged phosphorescence. Biochimica et Biophysica Acta 732, 347–51.Google Scholar
Naqvi, K., Gonzalez-Rodriguez, J., Cherry, R. & Chapman, D. (1973). Spectroscopic technique for studying protein rotation in membranes. Nature, London 245, 249–51.Google Scholar
Nicholson, G. L. (1976). Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochimica et Biophysica Acta 457, 57108.Google Scholar
Oldfield, E. & Chapman, D. (1972). Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Letters 23, 285–97.CrossRefGoogle ScholarPubMed
Op Den Kamp, J. (1979). Lipid asymmetry in membranes. Annual Review of Biochemistry 48, 4781.CrossRefGoogle ScholarPubMed
Ovchinnikov, Y., Abdulaev, N., Feigira, M., Kieselev, A. & Labanov, N. (1979). The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Letters 100, 219–24.Google Scholar
Rice, D., Meadows, M., Scheinmann, A., Goni, F., Gomez-Fernandez, J., Moscarello, M., Chapman, D. & Oldfield, E. (1979). Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2+-ATPase, lipophilin and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Biochemistry 18, 5893–903.Google Scholar
Ross, M., Klymkowsky, M., Agard, D. & Stroud, R. (1977). Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. Journal of Molecular Biology 116, 635–55.Google Scholar
Rothman, J. & Lenard, J. (1977). Membrane asymmetry. Science 195, 743–53.Google Scholar
Rothschild, K. J. & Clark, N. A. (1979). Polarized infrared spectroscopy of oriented purple membrane. Biophysical Journal 25, 473–88.Google Scholar
Schulte, T. H. & Marchesi, V. T. (1979). Conformation of human erythrocyte glycophorin A and its constituent peptides. Biochemistry 18, 275–80.Google Scholar
Segrest, J. P., Kahane, I., Jackson, R. L. & Marchesi, V. M. (1973). Major glycoprotein of the human erythrocyte membrane: evidence for an amphipathic molecular structure. Archives of Biochemistry and Biophysics 155, 167–83.CrossRefGoogle ScholarPubMed
Singer, S. J. & Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720–31.Google Scholar
Steim, J., Tourtelotte, M., Reinert, J., McElhaney, R. & Rader, R. (1969). Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proceedings of the National Academy of Sciences, USA 63, 104–9.Google Scholar
Susi, H., Timasheff, S. N. & Stevens, L. (1967). Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. Journal of Biological Chemistry 242, 5460–6.Google Scholar
Taylor, M. G. & Smith, I. C. P. (1980). The fidelity of response by nitroxide spin probes to changes in membrane organization: the condensing effect of cholesterol. Biochimica et Biophysica Acta 599, 140–9.Google Scholar
Timasheff, S. N., Susi, H. & Stevens, L. (1967). The infrared spectra and protein conformations in aqueous solutions. II Survey of globular proteins. Journal of Biological Chemistry 242, 5467–73.Google Scholar
Tomita, M., Furthmayr, H. & Marchesi, V. (1978). Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence. Biochemistry 17, 4756–70.Google Scholar
Unwin, P. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. Journal of Molecular Biology 94, 425–40.Google Scholar
Unwin, P. N. T. & Zampighi, G. (1982). Structure of the junction between communicating cells. Nature, London 283, 545–9.Google Scholar
Welte, W., Hodapp, N., Aehnelt, C. & Kreutz, W. (1981). Variable planar particle arrangements in the photosynthetic membrane of Rhodopseudomonas viridis. Biophys. Struct. Meck. 7, 209–12.Google Scholar
Welte, W. & Kreutz, W. (1982). Formation, structure and composition of a planar hexagonal lattice composed of specific protein-lipid complexes in the thylakoid membranes of Rhodopseudomonas viridis. Biochimica et Biophysica Acta 692, 479–88.CrossRefGoogle Scholar