Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T02:31:40.544Z Has data issue: false hasContentIssue false

Characterization of SSU and LSU rRNA genes of three Trypanosoma (Herpetosoma) grosi isolates maintained in Mongolian jirds

Published online by Cambridge University Press:  07 October 2004

H. SATO
Affiliation:
Department of Parasitology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
A. OSANAI
Affiliation:
Department of Parasitology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
H. KAMIYA
Affiliation:
Department of Parasitology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
Y. OBARA
Affiliation:
Laboratory of Cytogenetics, Department of Biofunctional Science, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
W. JIANG
Affiliation:
Xinjiang Center of Diseases Prevention and Control, Urumqi, Xinjiang 83002, China
Q. ZHEN
Affiliation:
Xinjiang Center of Diseases Prevention and Control, Urumqi, Xinjiang 83002, China
J. CHAI
Affiliation:
Xinjiang Center of Diseases Prevention and Control, Urumqi, Xinjiang 83002, China
Y. UNE
Affiliation:
Laboratory of Veterinary Pathology, School of Verinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 229-8501, Japan
M. ITO
Affiliation:
Laboratory of Immunology, Central Institute for Experimental Animals, Kawasaki 216-0001, Japan

Abstract

Trypanosoma (Herpetosoma) grosi, which naturally parasitizes Apodemus spp., can experimentally infect Mongolian jirds (Meriones unguiculatus). Three isolates from A. agrarius, A. peninsulae, and A. speciosus (named SESUJI, HANTO, and AKHA isolates, respectively) of different geographical origin (AKHA from Japan, and the others from Vladivostok), exhibited different durations of parasitaemia in laboratory jirds (2 weeks for HANTO, and 3 weeks for the others). To assess the genetic background of these T. grosi isolates, their small (SSU) and large subunit (LSU) ribosomal RNA genes (rDNA) were sequenced along with those of 2 other Herpetosoma species from squirrels. The SSU rDNA sequences of these 3 species along with available sequences of 3 other Herpetosoma trypanosomes (T. lewisi, T. musculi and T. microti) seemed to reflect well the phylogenetic relationship of their hosts. Three isolates of T. grosi exhibited base changes at 2–6 positions of 2019-base 18S rDNA, at 5–29 positions of 1817/1818-base 28Sα rDNA, or 1–5 positions of 1557–1559-base 28Sβ rDNA, and none was separated from the other 2 isolates by rDNA nucleotide sequences. Since base changes of Herpetosoma trypanosomes at the level of inter- and intra-species might occur frequently in specified rDNA regions, the molecular analysis on these regions of rodent trypanosomes could help species/strain differentiation and systematic revision of Herpetosoma trypanosome species, which must be more abundant than presently known.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALBRIGHT, J. W. & ALBRIGHT, J. F. ( 1991). Rodent trypanosomes: their conflict with the immune system of the host. Parasitology Today 7, 137140.CrossRefGoogle Scholar
CANNONE, J. J., SUBRAMANIAN, S., SCHNARE, M. N., COLLETT, J. R., D'SOUZA, L. M., DU, Y., FENG, B., LIN, N., MADABUSHI, L. V., MULLER, K. M., PANDE, N., SHANG, Z., YU, N. & GUTELL, R. R. ( 2002). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinformatics 3, 2. [available on: www.biomedcentral.com/1471-2105/3/2].Google Scholar
CHIEJINA, S. N., STREET, J., WAKELIN, D. & BEHNKE, J. M. ( 1993). Response of inbred mice to infection with a new isolate of Trypanosoma musculi. Parasitology 107, 233236.CrossRefGoogle Scholar
CULBERTSON, J. T. ( 1941). Trypanosomiasis in the Florida cotton rat, Sigmodon hispidus littoralis. Journal of Parasitology 27, 4552.CrossRefGoogle Scholar
DAVIS, B. S. ( 1952). Studies on the trypanosomes of some California mammals. University of California Publication in Zoology 57, 145245.Google Scholar
DUSANIC, D. G. ( 1975). Immunosuppression and ablastin. Experimental Parasitology 38, 322337.CrossRefGoogle Scholar
HAAG, J., O'HUIGIN, C. & OVERATH, P. ( 1998). The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Molecular and Biochemical Parasitology 91, 3749.CrossRefGoogle Scholar
HASAN, G., TURNER, M. J. & CORDINGLEY, J. S. ( 1984). Ribosomal RNA genes of Trypanosoma brucei: mapping the regions specifying the six small ribosomal RNAs. Gene 27, 7586.CrossRefGoogle Scholar
HILTON, D. F. J. & MAHRT, J. L. ( 1972). Taxonomy of trypanosomes (Protozoa: Trypanosomatidae) of Spermophilus spp. (Rodentia: Sciuridae). Parasitology 65, 403425.Google Scholar
HOARE, C. A. ( 1972). The Trypanosomes of Mammals. Blackwell Scientific Publications, Oxford.
MARAGHI, S. & MOLYNEUX, D. H. ( 1989). Studies on cross-immunity in Herpetosoma trypanosomes of Microtus, Clethrionomys and Apodemus. Parasitology Research 75, 175177.CrossRefGoogle Scholar
MASLOV, D. A., LUKES, J., JIRKU, M. & SIMPSON, L. ( 1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology 75, 197205.CrossRefGoogle Scholar
MOLYNEUX, D. H. ( 1969 a). The morphology and biology of Trypanosoma (Herpetosoma) evotomys of the bank-vole, Clethrionomys glareolus. Parasitology 59, 843857.Google Scholar
MOLYNEUX, D. H. ( 1969 b). The morphology and life history of Trypanosoma (Herpetosoma) microti of the field vole, Microtus agrestis. Annals of Tropical Medicine and Parasitology 63, 229244.Google Scholar
MOLYNEUX, D. H. ( 1970). Developmental patterns in trypanosomes of the subgenus Herpetosoma. Annals de Societe Belge de Medecine Tropicale 50, 229238.Google Scholar
MONROY, F. P. & DUSANIC, D. G. ( 2000). The kidney form of Trypanosoma musculi: a distinct stage in the life cycle? Parasitology Today 16, 107110.Google Scholar
MÜHLPFORDT, H. ( 1969). Die Entwicklung von Trypanosoma lewisi in Meriones unguiculatus bei zusätzlicher Bartonella-Infection. Zeitschrift für Tropenmedizin und Parasitologie 20, 136144.Google Scholar
NOYES, H. A., AMBROSE, P., BARKER, F., BEGON, M., BENNET, M., BOWN, K. J. & KEMP, S. J. ( 2002). Host specificity of Trypanosoma (Herpetosoma) species: evidence that bank voles (Clethrionomys glareolus) carry only one T. (H.) evotomys 18S rRNA genotype but wood mice (Apodemus sylvaticus) carry at least two polyphyletic parasites. Parasitology 124, 185190.Google Scholar
SATO, H., ISHITA, K., MATSUO, K., INABA, T., KAMIYA, H. & ITO, M. ( 2003). Persistent infection of Mongolian jirds with a non-pathogenic trypanosome, Trypanosoma (Herpetosoma) grosi. Parasitology 127, 357363.CrossRefGoogle Scholar
SATO, H., ISHITA, K., OSANAI, A., YAGISAWA, M., KAMIYA, H. & ITO, M. ( 2004). T cell-dependent elimination of dividing Trypanosoma grosi from the bloodstream of Mongolian jirds. Parasitology 128, 295304.CrossRefGoogle Scholar
SPENCER, D. F., COLLINGS, J. C., SCHNARE, M. N. & GRAY, M. W. ( 1987). Multiple spacer sequences in the nuclear large subunit ribosomal RNA gene of Crithidia fasciculata. EMBO Journal 6, 10631071.Google Scholar
STEVENS, J. R. & GIBSON, W. ( 1999). The molecular evolution of trypanosomes. Parasitology Today 15, 432437.CrossRefGoogle Scholar
STEVENS, J. R., NOYES, H. A., DOVER, G. A. & GIBSON, W. C. ( 1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107116.CrossRefGoogle Scholar
STEVENS, J. R., TEIXEIRA, M. M. G., BINGLE, L. E. H. & GIBSON, W. C. ( 1999). The taxonomic position and evolutionary relationships of Trypanosoma rangeli. International Journal for Parasitology 29, 749757.CrossRefGoogle Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. ( 1994). CLUSTRAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
VAN DE PEER, Y., DE RIJK, P., WUYTS, J., WINKELMANS, T. & DE WACHTER, R. ( 2000). The European small subunit ribosomal RNA database. Nucleic Acids Research 28, 175176.CrossRefGoogle Scholar
VIENS, P. ( 1985). Immunology of nonpathogenic trypanosomes of rodents. In Immunology and Pathogenesis of Trypanosomiasis (ed. Tizard, I.), pp. 201223. CRC Press, Boca Raton, Florida.
WHITE, T. C., RUDENKO, G. & BORST, P. ( 1986). Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to Domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Research 14, 94719489.CrossRefGoogle Scholar
WILSON, D. E. & REEDER, D. M. ( 1993). Mammal Species of the World: a Taxonomic and Geographic Reference, 2nd Edn. Smithsonian Institution, Washington.