Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T11:40:23.750Z Has data issue: false hasContentIssue false

Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection

Published online by Cambridge University Press:  23 June 2017

L. H. S. FARIAS
Affiliation:
Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil
A. P. D. RODRIGUES
Affiliation:
National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil Laboratory of Electron Microscopy, Department of Health Surveillance, Ministry of Health, Evandro Chagas Institute, Belém, Pará, Brazil
E. C. COÊLHO
Affiliation:
Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil
M. F. SANTOS
Affiliation:
Cell and Developmental Biology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
S. C. SAMPAIO*
Affiliation:
Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
E. O. SILVA*
Affiliation:
Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil
*
*Corresponding authors: Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil. E-mail: edilene@ufpa.br and Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil. E-mail: sandra.coccuzzo@butantan.gov.br
*Corresponding authors: Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil. E-mail: edilene@ufpa.br and Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil. E-mail: sandra.coccuzzo@butantan.gov.br

Summary

American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage – Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL−1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adade, C. M., Carvalho, A. L. O., Tomaz, M. A., Costa, T. F. R., Godinho, J. L., Melo, P. A., Lima, A. P. C. A., Rodrigues, J. C. F., Zingali, R. B. and Souto-Padrón, T. (2014). Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and Leishmania . PLoS Neglected Tropical Diseases 8, e3252.Google Scholar
Aliberti, J., Serhan, C. and Sher, A. (2002 a). Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. Journal of Experimental Medicine 196, 12531262.Google Scholar
Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C. N. and Sher, A. (2002 b). Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunology 3, 7682.CrossRefGoogle ScholarPubMed
Barros, G. A. C., Pereira, A. V., Barros, L. C., L., A. Jr, Calvi, S. A., Santos, L. D., Barraviera, B. and Ferreira, R. S. (2015). In vitro activity of phospholipase A2 and of peptides from Crotalus durissus terrificus venom against amastigote and promastigote forms of Leishmania (L.) infantum chagasi . Journal of Venomous Animals and Toxins Including Tropical Diseases 21, 48.Google Scholar
Bashir, S., Sharma, Y., Elahi, A. and Khan, F. (2016). Macrophage polarization: the link between inflammation and related diseases. Inflammation Research 65, 111.CrossRefGoogle ScholarPubMed
Bhattacharya, S., Ghosh, P., De, T., Gomes, A., Gomes, A. and Dungdung, S. R. (2013). In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Experimental Parasitology 135, 126133.Google Scholar
Butler, M. S. (2008). Natural products to drugs: natural product-derived compounds in clinical trials. Natural Product Reports 25, 475.Google Scholar
Cassado, A. D. A., de Albuquerque, J. A. T., Sardinha, L. R., Buzzo, C. D. L., Faustino, L., Nascimento, R., Ghosn, E. E. B., Lima, M. R. D., Alvarez, J. M. M. and Bortoluci, K. R. (2011). Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli. PLoS ONE 6, e22141.Google Scholar
Costa, E. S., Faiad, O. J., Landgraf, R. G., Ferreira, A. K., Brigatte, P., Curi, R., Cury, Y. and Sampaio, S. C. (2013). Involvement of formyl peptide receptors in the stimulatory effect of crotoxin on macrophages co-cultivated with tumour cells. Toxicon 74, 167178.Google Scholar
de Moura, A. A., Kayano, A. M., Oliveira, G. A., Setúbal, S. S., Ribeiro, J. G., Barros, N. B., Nicolete, R., Moura, L. A., Fuly, A. L., Nomizo, A., da Silva, S. L., Fernandes, C. F. C., Zuliani, J. P., Stábeli, R. G., Soares, A. M. and Calderon, L. A. (2014). Purification and biochemical characterization of three myotoxins from Bothrops mattogrossensis snake venom with toxicity against Leishmania and tumor cells. BioMed Research International 2014, 113.Google Scholar
de Vries, H. J. C., Reedijk, S. H. and Schallig, H. D. F. H. (2015). Cutaneous leishmaniasis: recent developments in diagnosis and management. American Journal of Clinical Dermatology 16, 99109.CrossRefGoogle ScholarPubMed
Ding, A. H., Nathan, C. F. and Stuehr, D. J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediate from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. Journal of Immunology 141, 2407.Google Scholar
Faiad, O. J. (2012). Efeito da Crotoxina Sobre Função e o Metabolismo de Glicose e Glutamina de Macrófagos Durante a Progressão Tumoral. Master's Dissertation, USP, São Paulo. doi: 10.11606/D.42.2012.tde-18042013-085640.Google Scholar
Fernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A. and Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS Neglected Tropical Diseases 8, e2871.Google Scholar
Fotakis, G. and Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160, 171177.Google Scholar
Furtado, J. L., Oliveira, G. A.., Pontes, A. S., Setúbal, S. D. S., Xavier, C. V., Lacouth-Silva, F., Lima, B. F., Zaqueo, K. D., Kayano, A. M., Calderon, L. A., Stábeli, R. G., Soares, A. M. and Zuliani, J. P. (2014). Activation of J77A.1 macrophages by three phospholipases A2 isolated from Bothrops atrox snake venom. BioMed Research International 2014, 13.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Liu, Y.-C., Zou, X.-B., Chai, Y.-F. and Yao, Y.-M. (2014). Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences 10, 520529.Google Scholar
Lôbo de Araújo, a. and Radvanyi, F. (1987). Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon 25, 11811188.Google Scholar
Macedo, S. R. A., de Barros, N. B., Ferreira, A. S., Moreira-Dill, L. S., Calderon, L. A., Soares, A. M. and Nicolete, R. (2015). Biodegradable microparticles containing crotamine isolated from Crotalus durissus terrificus display antileishmanial activity in vitro . Pharmacology 95, 7886.Google Scholar
Marcinkiewicz, C. (2013). Applications of snake venom components to modulate integrin activities in cell–matrix interactions. International Journal of Biochemistry & Cell Biology 45, 19741986.Google Scholar
McGwire, B. S. and Satoskar, A. R. (2014). Leishmaniasis: clinical syndromes and treatment. Qjm 107, 714.Google Scholar
Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology 73, 209212.Google Scholar
Muhammad, I., Dunbar, D. C., Khan, S. I., Tekwani, B. L., Bedir, E., Takamatsu, S., Ferreira, D. and Walker, L. A. (2003). Antiparasitic alkaloids from Psychotria klugii . Journal of Natural Products 66, 962967.Google Scholar
Nunes, D. C. O., Figueira, M. M. N. R., Lopes, D. S., De Souza, D. L. N., Izidoro, L. F. M., Ferro, E. A. V., Souza, M. A., Rodrigues, R. S., Rodrigues, V. M. and Yoneyama, K. A. G. (2013). BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis . Parasitology 140, 844854.Google Scholar
Passero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D. and Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research 101, 13651371.Google Scholar
Passero, L. F. D., Laurenti, M. D., Tomokane, T. Y., Corbett, C. E. P. and Toyama, M. H. (2008). The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitology Research 102, 10251033.Google Scholar
Peichoto, M. E., Tavares, F. L., DeKrey, G. and Mackessy, S. P. (2011). A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Toxicon 58, 2834.Google Scholar
Pereira, B. A. S. and Alves, C. R. (2008). Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis . Veterinary Parasitology 158, 239255.CrossRefGoogle ScholarPubMed
Podinovskaia, M. and Descoteaux, A. (2015). Leishmania and the macrophage: a multifaceted interaction. Future Microbiology 10, 111129.Google Scholar
Quintana, J. C., Chacón, A. M., Vargas, L., Segura, C., Gutiérrez, J. M. and Alarcón, J. C. (2012). Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica 124, 126132.Google Scholar
Rangel-Santos, A., Dos-Santos, E., Lopes-Ferreira, M., Lima, C., Cardoso, D. and Mota, I. (2004). A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus . Toxicon 43, 801810.CrossRefGoogle ScholarPubMed
Rath, M., Müller, I., Kropf, P., Closs, E. I. and Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Frontiers in Immunology 5, 110.Google Scholar
Rotureau, B., Morales, M. a., Bastin, P. and Späth, G. F. (2009). The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development? Cellular Microbiology 11, 710718.CrossRefGoogle ScholarPubMed
Sampaio, S., Brigatte, P., Sousa-e-Silva, M. C., dos-Santos, E., Rangel-Santos, A., Curi, R. and Cury, Y. (2003). Contribution of crotoxin for the inhibitory effect of Crotalus durissus terrificus snake venom on macrophage function. Toxicon 41, 899907.Google Scholar
Sampaio, S. C., Rangel-Santos, A. C., Peres, C. M., Curi, R. and Cury, Y. (2005). Inhibitory effect of phospholipase A2 isolated from Crotalus durissus terrificus venom on macrophage function. Toxicon 45, 671676.Google Scholar
Sampaio, S. C., Santos, M. F., Costa, E. P., Rangel-Santos, A. C., Carneiro, S. M., Curi, R. and Cury, Y. (2006 a). Crotoxin induces actin reorganization and inhibits tyrosine phosphorylation and activity of small GTPases in rat macrophages. Toxicon 47, 909919.Google Scholar
Sampaio, S. C., Alba-Loureiro, T. C., Brigatte, P., Landgraf, R. G., dos Santos, E. C., Curi, R. and Cury, Y. (2006 b). Lipoxygenase-derived eicosanoids are involved in the inhibitory effect of Crotalus durissus terrificus venom or crotoxin on rat macrophage phagocytosis. Toxicon 47, 313321.Google Scholar
Schepetkin, I. A., Khlebnikov, A. I., Kirpotina, L. N. and Quinn, M. T. (2015). Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives. International Immunopharmacology.Google Scholar
Setubal, S. S., Pontes, A. S., Furtado, J. L., Kayano, A. M., Stábeli, R. G. and Zuliani, J. P. (2011). Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C. Journal of Venomous Animals and Toxins including Tropical Diseases 17, 430441.Google Scholar
Silveira, F. T., Lainson, R., Gomes, C. M. C., Laurenti, M. D. and Corbett, C. E. P. (2009). Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunology 31, 423431.Google Scholar
Sokol, R. J., Hudson, G., James, N. T., Frost, I. J. and Wales, J. (1987). Human macrophage development: a morphometric study. Journal of Anatomy 151, 2735.Google Scholar
Torres, A. F. C., Dantas, R. T., Toyama, M. H., Filho, E. D., Zara, F. J., Rodrigues de Queiroz, M. G., Pinto Nogueira, N. A., Rosa de Oliveira, M., de Oliveira Toyama, D., Monteiro, H. S. A. and Martins, A. M. C. (2010). Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and l-amino acid oxidase. Toxicon 55, 795804.Google Scholar
Ueno, N. and Wilson, M. E. (2012). Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends in Parasitology 28, 335344.Google Scholar
Venturin, G. L., Chiku, V. M., Silva, K. L. O., de Almeida, B. F. M. and de Lima, V. M. F. (2016). M1 polarization and the effect of PGE2 on TNF-α production by lymph node cells from dogs with visceral leishmaniasis. Parasite Immunology 38, 698704.Google Scholar
Xuan, W., Qu, Q., Zheng, B., Xiong, S. and Fan, G.-H. (2015). The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. Journal of Leukocyte Biology 97, 6169.Google Scholar
Zhou, Y., Zhang, T., Wang, X., Wei, X., Chen, Y., Guo, L., Zhang, J. and Wang, C. (2015). Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cellular Physiology and Biochemistry 36, 631641.Google Scholar