Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T13:45:21.515Z Has data issue: false hasContentIssue false

Cytosolic glutathione S-transferases of Oesophagostomum dentatum

Published online by Cambridge University Press:  05 September 2008

A. JOACHIM*
Affiliation:
Institute of Parasitology and Zoology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
B. RUTTKOWSKI
Affiliation:
Institute of Parasitology and Zoology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
*
*Corresponding author: Institute of Parasitology and Zoology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria. Tel: 0043 1 25077 2200. Fax: 0043 1 25077 2290. E-mail: Anja.Joachim@vu-wien.ac.at

Summary

Oesophagostomum dentatum stages were investigated for glutathione S-transferase (GST) expression at the protein and mRNA levels. GST activity was detected in all stages (infectious and parasitic stages including third- and fourth-stage larvae of different ages as well as males and females) and could be dose-dependently inhibited with sulfobromophthalein (SBP). Addition of SBP to in vitro larval cultures reversibly inhibited development from third- to fourth-stage larvae. Two glutathione-affinity purified proteins (23 and 25 kDa) were detected in lysates of exsheathed third-stage larvae by SDS-PAGE. PCR-primers were designed based on peptide sequences and conserved GST sequences of other nematodes for complete cDNA sequences (621 and 624 nt) of 2 isoforms, Od-GST1 and Od-GST2, with 72% nucleotide similarity and 75% for the deduced proteins. Genomic sequences consisted of 7 exons and 6 introns spanning 1296 bp for Od-GST1 and 1579 and 1606 bp for Od-GST2. Quantitative real-time-PCR revealed considerably elevated levels of Od-GST1 in the early parasitic stages and slightly reduced levels of Od-GST2 in male worms. Both Od-GSTs were most similar to GST of Ancylostoma caninum (nucleotides: 73 and 70%; amino acids: 80 and 73%). The first three exons (75 amino acids) corresponded to a synthetic prostaglandin D2 synthase (53% similarity). O. dentatum GSTs might be involved in intrinsic metabolic pathways which could play a role both in nematode physiology and in host-parasite interactions.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, R. (1991). Glutathione S-transferases: reaction mechanism, structure, and function. Chemical Research in Toxicology 4, 131140.CrossRefGoogle ScholarPubMed
Ayyadevara, S., Dandapat, A., Singh, S. P., Siegel, E. R., Shmookler, Reis R. J., Zimniak, L. and Zimniak, P. (2006). Life span and stress resistance of Caenorhabditis elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mechanisms of Ageing and Development 128, 196205. doi: 10.1016/j.mad.2006.11.025CrossRefGoogle ScholarPubMed
Barrett, J. (1995). Helminth glutathione transferases. Helminthologia 32, 125128.Google Scholar
Blaxter, M., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T., and Thomas, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, London 392, 7175. doi:10.1038/32160CrossRefGoogle ScholarPubMed
Blum, H., Beier, H. and Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 9399.CrossRefGoogle Scholar
Brophy, P. M. and Barrett, J. (1990 a). Glutathione transferase in helminths. Parasitology 100, 345349.CrossRefGoogle ScholarPubMed
Brophy, P. M. and Barrett, J. (1990 b). Strategies for detoxification of aldehydic products of lipid peroxidation in helminths. Molecular and Biochemical Parasitology 42, 205211.CrossRefGoogle ScholarPubMed
Brophy, P. and Pritchard, D. I. (1994). Parasitic helminth glutathione S-transferases: an update on their potential as targets for immuno- and chemotherapy. Experimental Parasitology 79, 8990. doi: 10.1006/expr.1994.1067CrossRefGoogle ScholarPubMed
Brophy, P. M., Brown, A. and Pritchard, D. I. (1994 a). A PCR strategy for the isolation of glutathione S-transferases (GSTs) from nematodes. International Journal for Parasitology 24, 10591061.CrossRefGoogle ScholarPubMed
Brophy, P. M., Ben-Smith, A., Brown, A., Behnke, J. M. and Pritchard, D. I. (1994 b). Glutathione S-transferases from the gastrointestinal nematode Heligmosomoides polygyrus and mammalian liver compared. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 109, 585592.CrossRefGoogle ScholarPubMed
Brophy, P. M., Patterson, L. H., Brown, A. and Pritchard, D. I. (1995 a). Glutathione S-transferase (GST) expression in the human hookworm Necator americanus: potential roles for excretory-secretory forms of GST. Acta Tropica 59, 259263.CrossRefGoogle ScholarPubMed
Brophy, P. M., Ben-Smith, A., Brown, A., Behnke, J. M. and Pritchard, D. (1995 b). Differential expression of glutathione S-transferase (GST) by adult Heligmosomoides polygyrus during primary infection in fast and slow responding hosts. International Journal for Parasitology 25, 641645.CrossRefGoogle ScholarPubMed
Campbell, A. M., van Eldik, R., Liebau, E., Barrett, J., Brophy, P. M., Teesdale-Spittle, P. and Wang, M. F. (2001 a). Towards validation of glutathione S-transferase (GST) as a filarial nematode drug target. Chemico-Biological Interactions 133, 240243.Google Scholar
Campbell, A. M., Teesdale-Spittle, P. H., Barrett, J., Liebau, E., Jefferies, J. R. and Brophy, M. (2001 b). A common class of nematodes glutathione S-transferase (GST) revealed by the theoretical proteome of the model organism Caenorhabditis elegans. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 128, 701708.CrossRefGoogle ScholarPubMed
Cottee, P. A., Abs El-Osta, Y. G., Nisbert, A. J. and Gasser, R. B. (2006). Ubiquitin-conjugating enzyme genes in Oesophagostomum dentatum. Parasitology Research 99, 119125. doi: 10.1007/s00436-005-0111-x.CrossRefGoogle ScholarPubMed
Daugschies, A. (1995). Oesophagostomum dentatum: population dynamics and synthesis of prostanoids by histotropic stages cultured in vitro. Experimental Parasitology 81, 574583. doi:10.1006/expr.1995.1151CrossRefGoogle ScholarPubMed
Daugschies, A. and Ruttkowski, B. (1998). Modulation of migration of Oesophagostomum dentatum larvae by inhibitors and products of eicosanoid metabolism. International Journal for Parasitology 28, 355362. doi: 10.1016/S0020-7519(97)00153-7CrossRefGoogle ScholarPubMed
Daugschies, A. and Watzel, C. (1999). In vitro development of histotropic larvae of Oesophagostomum dentatum under various conditions of cultivation. Parasitology Research 85, 158161.CrossRefGoogle ScholarPubMed
Daugschies, A. and Joachim, A. (2000). Eicosanoids in parasites and parasitic infections. Advances in Parasitology 46, 181240.CrossRefGoogle ScholarPubMed
Gupta, S. and Srivastava, A. K. (2006). Glutathione metabolism of filarial worms: a vulnerable target for the design and synthesis of new antifilarial agents. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 12, HY 1–9.Google Scholar
Hervé, M., Angeli, V., Pinzar, E., Wintjens, R., Faveeuw, C., Narumiya, S., Capron, A., Urade, Y., Capron, M., Riveau, G. and Trottein, F. (2003). Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. European Journal of Immunology 33, 27642772. doi: 10.1002/eji.200324143CrossRefGoogle Scholar
Joachim, A., Daugschies, A., Christensen, C. M., Bjørn, H. and Nansen, P. (1997). Use of random amplified polymorphic DNA-polymerase chain reaction for the definition of genetic markers for species and strains of porcine Oesophagostomum. Parasitology Research 83, 646654.CrossRefGoogle ScholarPubMed
Joachim, A., Ruttkowski, B. and Daugschies, A. (1998). Changes in antigen and glycoprotein patterns during the development of Oesophagostomum dentatum, the nodular worm of pigs. International Journal for Parasitology 28, 18531860.CrossRefGoogle Scholar
Joachim, A., Ruttkowski, B. and Daugschies, A. (2001). Oesophagostomum dentatum: expression patterns of enzymes involved in eicosanoid production. Parasitology International 50, 211215.CrossRefGoogle ScholarPubMed
Johnson, K. A., Angelucci, F., Bellelli, A., Hervé, M., Fontaine, J., Tsernoglou, D., Capron, A., Trottein, F. and Brunori, M. (2003). Crystal structure of the 28 kDa glutathione S-transferase from Schistosoma haematobium. Biochemistry 42, 1008410094. doi: 10.1021/bi034449rCrossRefGoogle ScholarPubMed
Kampkötter, A., Volkmann, T. E., de Castro, S. H., Leiers, B., Klotz, L. O., Johnson, T. E., Link, C. D. and Henkle-Dührsen, K. (2003). Functional analysis of the glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3): a parasite GST confers increased resistance to oxidative stress in Caenorhabditis elegans. Journal of Molecular Biology 325, 2537. doi: 10.1016//S0022-2836(02)01174-9.CrossRefGoogle ScholarPubMed
Kawalek, J. C., Rew, R. S. and Heavner, J. (1984). Glutathione S-transferase, a possible drug-metabolizing enzyme, in Haemonchus contortus: comparative activity of a cambenzole-resistant and a susceptible strain. International Journal for Parasitology 14, 173175.CrossRefGoogle Scholar
Leiers, B., Kampkötter, A., Grevelding, C. G., Link, C., Johnson, T. E. and Henkle-Dührsen, K. (2003). A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radical Biology and Medicine 34, 14051415. doi:10.1016/S0891-5849(03)00102-3.CrossRefGoogle ScholarPubMed
Liebau, E., Schönberger, Ö. L., Walter, R. D. and Henkle-Dührsen, K. (1994). Molecular cloning and expression of cDNA encoding glutathione S-transferase from Ascaris suum. Molecular and Biochemical Parasitology 63, 167170. doi:10.1016/0166-6851(94)90021-3CrossRefGoogle ScholarPubMed
Liebau, E., Eschbach, M. L., Tawe, A., Fischer, P., Walter, R. D. and Henkle-Dührsen, K. (2000). Identification of a stress-responsive Onchocerca volvulus glutathione S-transferase (Ov-GST-3) by RT-PCR differential display. Molecular and Biochemical Parasitology 109, 101110. doi:10.1016/S0166-6851(00)00232-2CrossRefGoogle ScholarPubMed
Mahajan, S. and Atkins, W. M. (2005). The chemistry and biology of inhibitors and pro-drugs targeted to glutathione s-transferases. Cellular and Molecular Life Science 62, 12211233. doi: 10.1007/s00018-005-4524-6CrossRefGoogle ScholarPubMed
Meyer, D. J., Muimo, R., Thomas, M., Coates, D. and Isaac, R. E. (1996). Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galli. The Biochemical Journal 313, 223227.CrossRefGoogle ScholarPubMed
Miller, C. M., Howell, M. J. and Boray, J. C. (1994). Glutathione S-transferases as markers of salicylanilide resistance in isolates of Fasciola hepatica. International Journal for Parasitology 24, 533542.CrossRefGoogle ScholarPubMed
Mitchell, G. M. (1989). Glutathione S-trasferases – potential components of anti-schistosome vaccines? Parasitology Today 5, 3437.CrossRefGoogle ScholarPubMed
Noverr, M. C., Erb-Downward, J. R. and Huffnagle, G. B. (2003). Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clinical Microbiology Reviews 16, 517533. doi: 10.1128/CMR.16.3.517-533.2003CrossRefGoogle ScholarPubMed
O'Leary, K. A. and Tracy, J. W. (1992). Schistosoma mansoni: glutathione S-transferase-catalyzed detoxication of dichlorvos. Experimental Parasitology 72, 355361.CrossRefGoogle Scholar
Pearson, W. R. (2005). Phylogenies of glutathione transferase families. Methods in Enzymology 401, 186204. doi: 10.1016/S0076-6879(05)01012-8CrossRefGoogle ScholarPubMed
Precious, W. Y. and Barrett, J. (1989). Xenobiotic metabolism in helminths. Parasitology Today 5, 156160.CrossRefGoogle ScholarPubMed
Pritchard, D. I. (1995). The survival strategies of hookworms. Parasitology Today 11, 255259.CrossRefGoogle Scholar
Sexton, J. L., Milner, A. R., Panaccio, M., Waddington, J., Wijffels, G., Chandler, D., Thompson, C., Wilson, L., Spithill, T. W. and Mitchell, G. F. (1990). Glutathione S-transferase. Novel vaccine against Fasciola hepatica infection in sheep. Journal of Immunology 145, 39053910.CrossRefGoogle ScholarPubMed
Sharp, P. J., Smith, D. R., Bach, W., Wagland, B. M. and Cobon, G. S. (1991). Purified glutathione S-transferases from parasites as candidate protective antigens. International Journal for Parasitology 21, 839846.CrossRefGoogle ScholarPubMed
Sheehan, D., Meade, G., Foley, V. M. and Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. The Biochemical Journal 360, 116.CrossRefGoogle ScholarPubMed
Sommer, A., Rickert, R., Fischer, P., Steinhart, H., Walter, R. D. and Liebau, E. (2003). A dominant role for extracellular glutathione S-transferase from Onchocerca volvulus is the production of prostaglandin D2. Infection and Immunity 71, 36033606. doi: 10.1128/IAI.71.6.3603-3606.2003CrossRefGoogle ScholarPubMed
Talvik, H., Christensen, C. M., Joachim, A., Bjørn, H., Roepstorff, A. and Nansen, P. (1997). Prepatent periods of different Oesophagostomum spp. isolates in experimentally infected pigs. Parasitology Research 83, 563568.CrossRefGoogle ScholarPubMed
van Rossum, A. J., Jefferies, J., Young, C. J., Barrett, J., Tait, A. and Brophy, P. M. (2001). Glutathione S-transferase (GST) functional genomics: role of Caenorhabditis elegans in investigating GST expression in parasitic nematodes. Chemico-biological Interactions 133, 274277.Google Scholar
van Rossum, A. J., Jefferies, J. R., Rijsewicjk, F. A. M., LaCourse, E. J., Teesdale-Spittle, P., Barrett, J., Tait, A. and Brophy, P. M. (2004). Binding of hematin by a new class of glutathione transferase from the blood-feeding nematode Haemonchus contortus. Infection and Immunity 72, 27802790. doi: 10.1128/IAI.72.5.2780-2790.2004CrossRefGoogle Scholar
Zhan, B., Liu, S., Perally, S., Xue, J., Fujiwara, R., Brophy, P., Xiao, S., Liu, Y., Feng, J., Williamson, A., Wang, Y., Bueno, L. L., Mendez, S., Goud, G., Bethony, J. M., Hawdon, J. M., Loukas, A., Jones, K. and Hotez, P. J. (2005). Biochemical characterization and vaccine potential of a heme-binding glutathione transferase from the adult hookworm Ancylostoma caninum. Infection and Immunity 73, 69036911. doi: 10.1128/IAI.73.10.6903-6911.2005CrossRefGoogle ScholarPubMed