Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:10:48.361Z Has data issue: false hasContentIssue false

Determinants of population biology of the chewing louse Brueelia apiastri (Mallophaga, Philopteridae) on the European bee-eater (Merops apiaster)

Published online by Cambridge University Press:  02 November 2006

J. KRIšTOFÍK
Affiliation:
Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
A. DAROLOVÁ
Affiliation:
Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
C. HOI
Affiliation:
Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstraße 1a, A-1160 Vienna, Austria
H. HOI
Affiliation:
Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstraße 1a, A-1160 Vienna, Austria

Abstract

In this study we examine the population biology of Brueelia apiastri, a chewing louse living on the European bee-eater (Merops apiaster). We investigate the relationships between parasite intensity of infestation, sex ratio, reproductive output, parasite size and their environment i.e. the morphology, condition, age and sex of the host. Chewing lice were collected, their sex and age (developmental stage) identified and parasite body size determined as a measure of parasite condition (larger individuals consume larger meals and larger females may produce larger clutches). The data show that there is variation in intensity as well as body size of B. apiastri between individual bee-eaters and this variation is independent of the sex of the birds. However, size, condition and age of the birds seem to influence the infestation rates with B. apiastri. The study suggested size-dependent depredation, since more, smaller chewing lice (usually nymphs) living on birds in better condition and birds having longer bills. Furthermore, more male chewing lice (males are smaller than females) live on older birds. Intraspecific competition between parasites seems to have a negative effect on female but not male body size but this result could be also explained by size-dependent depredation.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, W. and Schaefer, C. W. ( 1966). Longevity and egg production of female bed bugs, Cimex lectularius, fed various blood fractions and other substances. Annals of the Entomological Society of America 59, 5356.CrossRefGoogle Scholar
Blagoveschtschenskii, D. I. ( 1959). Nasekomye pukhoedy, I. Pukhoedy (Mallophaga). Fauna SSSR. Izdatelstvo Akademii Nauk, Moskva, Russia (in Russian).
Clayton, D. H. ( 1991). Coevolution of avian grooming and ectoparasite avoidance. In Bird-Parasite Interactions: Ecology, Evolution and Behaviour ( ed. Loy, J. E. and Zuk, M.), pp. 258289. Oxford University Press, Oxford, UK.
Clayton, D. H. and Cotgreave, P. ( 1994). Relationship of bill morphology to grooming behaviour in birds. Animal Behaviour 47, 195201.CrossRefGoogle Scholar
Clayton, D. H. and Moore, J. (Eds.) ( 1997). Host-Parasite Evolution: a General Principle and Avian Models. Oxford University Press, Oxford, UK.
Clark, F., Farrell, J. and Hill, L. A. ( 1994). A study population of the house martin (Delichon urbica (L.)) feather louse Brüelia gracilis Nitzsch (Mallophaga: Ischnocera) in Lincolnshire, UK. The Entomologist 113, 198206.Google Scholar
Cramp, S. (Ed.) ( 1985). Handbook of Birds of Europe, the Middle East and North Africa. Vol. IV. Oxford University Press, Oxford, UK.
Crompton, D. W. T. ( 1997). Birds as habitat for parasites. In Host-Parasite Evolution: a General Principle and Avian Models ( ed. Clayton, D. H. and Moore J.), pp. 253270. Oxford University Press, Oxford, UK.
Darolová, A., Hoi, H., Krištofík, J. and Hoi, C. ( 2001). Horizontal and vertical ectoparasite transmission of three species of Mallophaga, and individual variation in European Bee-eaters (Merops apiaster). Journal of Parasitology 81, 256262.CrossRefGoogle Scholar
Eichler, W. ( 1963). Dr. H. G. Bronns Klassen und Ordnungen des Tierreichs. Bd. 5, III. Abteilung, 7. Buch, b) Phthiraptera, Mallophaga. Akademische Verlagsgesellschaft, Greest and Porting, Leipzig, Germany.
Glutz von Blotzheim, U. and Bauer, K. M. ( 1980). Handbuch der Vögel Mitteleuropas. Akademische Verlagsgesellschaft, Wiesbaden, Germany.
Hoi, H., Darolová, A., König, C. and Krištofík, J. ( 1998). The relation between colony size and breeding density and ectoparasite load of adult European bee-eater (Merops apiaster). Ecosience 5, 156163.CrossRefGoogle Scholar
Johnson, C. G. ( 1942). The ecology of the bed-bug, Cimex lectularius L., in Britain. Journal of Hygiene 41, 345361.Google Scholar
Krištofík, J., Mašán, P. and šustek, Z. ( 1996). Ectoparasites of bee-eater (Merops apiaster) and arthropods in the nests. Biologia Bratislava 51, 557570.Google Scholar
Lessells, C. M. and Ovendon, G. N. ( 1989). Heritability of wing length and weight in European bee-eaters (Merops apiaster). Condor 91, 210214.CrossRefGoogle Scholar
Marshall, A. G. ( 1981). The Ecology of Ectoparasitic Insects. Academic Press, London, UK.
Simberloff, D. and Moore, J. ( 1997). Community ecology of parasites and free-living animals. In Host-Parasite Evolution: a General Principle and Avian Models. ( ed. Clayton, D. H. and Moore, J.), pp. 174197. Oxford University Press, Oxford, UK.
Svensson, L. ( 1992). Identification Guide to European Passerines. British Trust for Ornithology, Stockholm, Sweden.
Usinger, R. L. ( 1966). Monograph of Cimicidae (Hemiptera, Heteroptera). Entomological Society of America 7.