Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T04:16:23.608Z Has data issue: false hasContentIssue false

The distribution of Fasciola hepatica and Fasciola gigantica within southern Tanzania – constraints associated with the intermediate host

Published online by Cambridge University Press:  21 January 2008

S. M. WALKER*
Affiliation:
School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
A. E. MAKUNDI
Affiliation:
Open University of Tanzania, Manyara Regional Centre, P.O. Box 271, Babati, Tanzania
F. V. NAMUBA
Affiliation:
Open University of Tanzania, Manyara Regional Centre, P.O. Box 271, Babati, Tanzania
A. A. KASSUKU
Affiliation:
Department of Microbiology and Parasitology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
J. KEYYU
Affiliation:
Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
E. M. HOEY
Affiliation:
School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
P. PRÖDOHL
Affiliation:
School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
J. R. STOTHARD
Affiliation:
The Natural History Museum, Cromwell Road, London SW7 5BD, UK
A. TRUDGETT
Affiliation:
School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
*
*Corresponding author: School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL. E-mail: s.m.walker@qub.ac.uk

Summary

In East Africa, Fasciola gigantica is generally the causative agent of fasciolosis but there have been reports of F. hepatica in cattle from highland regions of Kenya, Ethiopia, Uganda and Zaire. The topography of the Southern Highlands of Tanzania provides an environment where the climatic conditions exist for the sustenance of lymnaeid species capable of supporting both Fasciola hepatica and F. gigantica. Theoretically this would allow interaction between fasciolid species and the possible creation of hybrids. In this report we present molecular data confirming the existence of the snail, Lymnaea truncatula, at high altitude on the Kitulo Plateau of the Southern Highlands, Tanzania, along with morphometric and molecular data confirming the presence of F. hepatica in the corresponding area. At lower altitudes, where climatic conditions were unfavourable for the existence of L. truncatula, the presence of its sister species L. natalensis was confirmed by molecular data along with its preferred fasciolid parasite, F. gigantica. Analysis based on a 618 bp sequence of the 28S rRNA gene did not reveal the presence of hybrid fasciolids in our fluke samples.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatsuma, T., Arakawa, Y., Iwagami, M., Honzako, Y., Cahyaningsih, U., Kang, S. Y. and Hong, S. J. (2000). Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitology International 49, 231238.CrossRefGoogle ScholarPubMed
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle ScholarPubMed
Ashrafi, K., Valero, M. A., Panova, M., Periago, M. V., Massoud, J. and Mas-Coma, S. (2006). Phenotypic analysis of adults of Fasciola hepatica, Fasciola gigantica and intermediate forms from the endemic region of Gilan, Iran. Parasitology International 55, 249260.CrossRefGoogle ScholarPubMed
Bargues, M. D. and Mas-Coma, S. (1997). Phylogenetic analysis of lymnaeid snails based on 18S rRNA sequences. Molecular Biology and Evolution 14, 569577.CrossRefGoogle Scholar
Bargues, M. D., Vigo, M., Horak, P., Dvorak, J., Patzner, R. A., Pointier, J. P., Jackiewicz, M., Meier-Brook, C. and Mas-Coma, S. (2001). European Lymnaeidae (Mollusca;Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infection, Genetics and Evolution 1, 85107.CrossRefGoogle ScholarPubMed
Boray, J. C. (1985). Flukes of domestic animals. In Parasites, Pests and Predators (ed. Gaafar, S. M., Howard, W. E. and Marsh, R. E.), pp. 179218. Elsevier, Amsterdam, Oxford, New York, Tokyo.Google Scholar
Botcher, M. (1967). Studies on the intermediate host of F. gigantica in Mwanza region. In Proceedings of Veterinary Research Conducted at the Central Veterinary Laboratory in Dar es Salaam between 31st July to 2nd August 1967. pp. 443445.Google Scholar
Brown, D. S. (1994). Freshwater Snails of Africa and their Medical Importance. Taylor and Francis, London.CrossRefGoogle Scholar
Cucher, M. A., Carnevale, S., Prepelitchi, L., Labbé, J. H. and Wisnivesky-Coli, C. (2006). PCR diagnosis of Fasciola hepatica in field-collected Lymnaea collumella and Lymnaea viatrix snails. Veterinary Parasitology 137, 7482.CrossRefGoogle Scholar
Dar, Y., Rondelaud, D. and Dreyfuss, G. (2004). Cercarial shedding from Galba truncatula infected with Fasciola gigantica of distinct geographic origins. Parasitology Research 89, 14321955.Google Scholar
Dinnik, J. A. and Dinnik, N. N. (1959). Symposium on Helminthiasis in Domestic Animals. C. C. T. A. Nairobi, No. 19, 43.Google Scholar
Ecmovic, T. J. and Mahlau, E. A. (1973). Animal health survey of Mbeya region, Tanzania. Bulletin of Epizootic Diseases of Africa 21, 187192.Google Scholar
Frandsen, F. and Christensen, N. O. (1984). An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. Acta Tropica 41, 181202.Google Scholar
Guralp, N., Oxcan, C. and Simms, B. T. (1964). Fasciola gigantica and fascioliasis in Turkey. American Journal of Veterinary Research 25, 196210.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hammond, J. A. (1965). Observations of fascioliasis in Tanganyika. Bulletin of Epizootic Diseases in Africa 13, 5565.Google ScholarPubMed
Huang, W. Y., He, B., Wang, C. R. and Zhu, XQ. (2004). Characterisation of Fasciola species from Mainland China by ITS-2 ribosomal DNA sequence. Veterinary Parasitology 120, 7583.CrossRefGoogle ScholarPubMed
Itagaki, T. and Tsutsumi, K. (1998). Triploid form of Fasciola in Japan: genetic relationships between Fasciola hepatica and Fasciola gigantica determined by ITS-2 sequence of nuclear rDNA. International Journal for Parasitology 28, 777781.CrossRefGoogle ScholarPubMed
Jabbour-Zahab, R., Pointier, J. P., Balzan, C., Khallayoune, K. and Renaud, F. (1997). Phylogeography and genetic divergence of some lymnaeid snails, intermediate hosts of human and animal fascioliasis with special reference to lymnaeids from the Bolivian Altiplano. Acta Tropica 64, 191203.CrossRefGoogle ScholarPubMed
Kendall, S. B. (1965). Relationship between species of Fasciola and their molluscan hosts. Advances in Parasitology 3, 5998.CrossRefGoogle Scholar
Keyyu, J. D., Kassuku, A. A., Kyvsgaard, N. C. and Monrad, J. (2005). Epidemiology of Fasciola gigantica and amphistomes in cattle on traditional, small-scale dairy and large-scale dairy farms in Iringa District, Tanzania. Tropical Animal Health and Production 37, 303314.CrossRefGoogle Scholar
Kristensen, T. K. (1987). A Field Guide to African Freshwater Snails. 2, East African Freshwater Snails. 2nd Edn. pp. 151. Charlottenlund: Danish Bilharziasis Laboratory, Denmark.Google Scholar
Mahlau, E. A. (1970). Liver fluke survey in Zebu cattle of the Iringa region of Tanzania and the first finding of the small fluke Dicrocoelium hospes (Loos, 1907). Bulletin of Epizootic Diseases of Africa 18, 2128.Google Scholar
Makundi, A. E. (2001). Epidemiology and control of fasciolosis and schistosomosis in the Southern Highlands of Tanzania. Ph.D. thesis. Sokoine University of Agriculture, Tanzania.Google Scholar
Malone, J. B. (1994). The landscape epidemiology of fasciolosis: geographic determinants of the disease risk. In Immunology, Pathobiology and Control of Fasciolosis (ed. Boray, J. C.), pp. 6581. ICOPA VIII, Izmir, MSD AGVET.Google Scholar
Malone, J. B., Gimmes, R., Hansen, J., Yilma, J. M., Slingenberg, J., Snijders, F., Nachtergaele, F. and Ataman, E. (1998). A geographic information system of the potential distribution and abundance of Fasciola hepatica and F. gigantica in East Africa based on Food and Agriculture Organization databases. Veterinary Parasitology 78, 87101.CrossRefGoogle Scholar
Marcilla, A., Bargues, M. D. and Mas-Coma, S. (2002). A PCR-RFLP assay for the distinction between Fasciola hepatica and Fasciola gigantica. Molecular and Cellular Probes 16, 327333.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Bargues, M. D. and Valero, M. A. (2005). Fascioliasis and other plant-borne trematode zoonoses. International Journal for Parasitology 35, 12551278.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Funatsu, I. R. and Bargues, M. D. (2001). Fasciola hepatica and lymnaeid snails occurring at very high altitude in South America. Parasitology Research 87, 10161019.Google Scholar
Mitchell, G. B. (2002). Update on fasciolosis in cattle and sheep. In Practice 24, 378385.CrossRefGoogle Scholar
Mostafa, O. M., Taha, H. A. and Ramadan, G. (2003). Diagnosis of Fasciola gigantica in snails using the polymerase chain reaction (PCR) assay. Journal of the Egyptian Society for Parasitology 33, 733742.Google ScholarPubMed
Msanga, J. F. (1985). Prevalence and economic importance of Fasciola gigantica and Stilesia hepatica in Sukumaland, Tanzania. Tanzania Veterinary Bulletin 7, 916.Google Scholar
Namuba, F. V., Makundi, A. E. and Kassuku, A. A. (2003). Studies of fasciolosis in the domestic stock with special reference to the finding of Fasciola hepatica for the first time in the southern highland of Tanzania. In Proceedings of the 23rd Tanzania Veterinary Association Conference, Arusha, 2–4th December 2003.Google Scholar
Ogambo-Ongama, A. H. (1969). The incidence of Fasciola hepatica in Kenya cattle. Bulletin of Epizootic Diseases of Africa 17, 420431.Google Scholar
Ogambo-Ongoma, A. H. (1972). Fascioliasis survey in Uganda. Bulletin of Epizootic Diseases of Africa 20, 3541.Google ScholarPubMed
Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology and Evolution 19, 198207.CrossRefGoogle ScholarPubMed
Soulsby, E. J. L. (1982). Helminths, Arthropods and Protozoa Parasites of Domesticated Animals. Baillere-Tindall. London.Google Scholar
Spithill, T. W. and Dalton, J. P. (1998). Progress in development of liver fluke vaccines. Parasitology Today 14, 224228.CrossRefGoogle ScholarPubMed
Stothard, J. R., Bremond, P., Andriamaro, L., Loxton, N. J., Sellin, E. and Rollinson, D. (2000). Molecular characterisation of the freshwater snail Lymnaea natalensis (Gastropoda:Lymnaeidae) with an observation of an unusual polymorphism in ribosomal small subunit genes. Journal of the Zoological Society of London 252, 303315.CrossRefGoogle Scholar
Swofford, D. L. (1991). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Trouvé, S., Degen, L., Renaud, F. and Goudet, J. (2003). Evolutionary implications of a high selfing rate in the freshwater snail Lymneae truncatula. Evolution 57, 23032314.CrossRefGoogle Scholar
Velusamy, R., Singh, B. P. and Raina, O. K. (2004). Detection of Fasciola gigantica infection in snails by polymerase chain reaction. Veterinary Parasitology 120, 8590.CrossRefGoogle ScholarPubMed
Walker, S. M., Fletcher, H. L., Hoey, E. M., Fairweather, I. and Trudgett, A. (2006). Stage-specific differences in fecundity over the lifecycle of two characterised isolates of the liver fluke, Fasciola hepatica. Parasitology 133, 209216.CrossRefGoogle ScholarPubMed
Walker, S. M., Prodöhl, P. A., Fletcher, H. L., Hanna, R. E. B., Kantzoura, V., Hoey, E. M. and Trudgett, A. (2007). Evidence for multiple mitochondrial lineages of Fasciola hepatica (liver fluke) within infrapopulations from cattle and sheep. Parasitology Research 101, 117125.CrossRefGoogle ScholarPubMed
Wilson, R. T. (1995). Animal health and disease control in the Usangu Wetland of Southwestern Tanzania. Tropical Animal Health and Production 35, 4767.CrossRefGoogle Scholar
Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. and Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle ScholarPubMed
Yilma, J. M. and Malone, J. B. (1998). A geographic information system forecast model for strategic control of fasciolosis in Ethiopia. Veterinary Parasitology 78, 103127.CrossRefGoogle ScholarPubMed