Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T04:45:53.576Z Has data issue: false hasContentIssue false

DNA probes for the detection of Babesia caballi

Published online by Cambridge University Press:  06 April 2009

E. S. Posnett
Affiliation:
Molecular Biology Section, Veterinary Research Institute, Onderstepoort 0110, South Africa
R. E. Ambrosio
Affiliation:
Molecular Biology Section, Veterinary Research Institute, Onderstepoort 0110, South Africa

Extract

A genomic library of Babesia caballi DNA was constructed in the plasmid vector pUC13. The specificity of the clones for B. caballi was established by the lack of hybridization to Babesia equi, Babesia bovis, Babesia bigemina and equine DNA. Two probes, pBC11 and pBC191, were isolated that could detect 0·25 ng and 0·125 ng of B. caballi DNA, corresponding to a parasitaemia of 0·12% and 0·06% respectively. pBC191 could detect B. caballi parasites in the blood of an experimentally infected horse as well as in naturally infected horses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aicher, B. M. (1984). Möglichkeiten der serologischen Differenzierung der Babesia equi- und Babesia caballi-Infection des Pferde mit Hilfe von KBR, IFAT, und ELISA. Ph.D. dissertation, University of Munich.Google Scholar
Ambrosio, R. E., Potgieter, F. T. & Nel, N. (1986). A column purification procedure for the removal of leucocytes from parasite infected blood. Onderstepoort Journal of Veterinary Research 53, 119–20.Google Scholar
Bellofatto, V. & Cross, G. A. M. (1988). Characterization of RNA transcripts from the alpha tubulin gene cluster of Leptomonas seymouri. Nucleic Acids Research 16, 3455–69.CrossRefGoogle ScholarPubMed
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513–23.CrossRefGoogle ScholarPubMed
Curran, J., Baillie, D. L. & Webster, J. M. (1985). Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology 90, 137–44.CrossRefGoogle Scholar
De Waal, D. T. & Potgieter, F. T. (1987). The transstadial transmission of Babesia caballi by Rhipicephalus evertsi evertsi. Onderstepoort Journal of Veterinary Research 54, 655–6.Google ScholarPubMed
De Waal, D. T., Van Heerden, J., Van Den Bergh, S. S., Stegman, G. F. & Potgieter, F. T. (1988). Isolation of pure Babesia equi and Babesia caballi organisms in splenectomized horses from endemic areas in South Africa. Onderstepoort Journal of Veterinary Research 55, 33–5.Google ScholarPubMed
Delange, T., Liu, A. Y. C., Van Der Ploeg, L. H. T., Borst, P., Tromp, M. C. & Van Bloom, J. H. (1983). Tandem repetition of the 5' mini-exon of variant surface glycoprotein genes: A multiple promoter for VSG gene transcription? Cell 34, 891900.CrossRefGoogle Scholar
Dretzen, G., Bellard, M., Sassone-Corsi, P. & Chambon, P. (1981). A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112, 295–8.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137, 266–7.Google ScholarPubMed
Friedhoff, K. T. (1982). Die Piroplasmen der Equiden – Bedeutung für die internationalen Pferdeverkehr. Berliner und Münchener Tierärztliche Wochenschrift 95, 368–74.Google Scholar
Johnson, P. J., Kooter, J. M. & Borst, P. (1987). Inactivation of transcription by UV radiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 51, 273–81.CrossRefGoogle ScholarPubMed
Landfear, S. M., Miller, S. I. & Wirth, D. F. (1986). Transcriptional mapping of Leishmania enriettii tubulin mRNAs. Molecular and Biochemical Parasitology 21, 235–45.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
Madden, P. A. & Holbrook, A. A. (1968). Equine piroplasmosis indirect fluorescent antibody test for Babesia caballi. American Journal of Veterinary Research 29, 117–23.Google ScholarPubMed
Morzaria, S. P., Brocklesby, D. W. & Harradine, D. L. (1977). Evaluation of the indirect fluorescent antibody test for Babesia major and Theileria mutans in Britain. Veterinary Research 100, 484–7.Google ScholarPubMed
Posnett, E. S. & Ambrosio, R. E. (1989). Repetitive DNA probes for the detection of Babesia equi. Molecular and Biochemical Parasitology 34, 75–8.CrossRefGoogle ScholarPubMed
Purnell, R. E. (1981). Babesiosis in various hosts. In Babesiosis (ed. Ristic, M. & Krier, J. P.), pp. 2564. New York: Academic Press.Google Scholar
Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Spithill, T. W. & Samaras, N. (1987). Genomic organization, chromosomal location and transcription of dispersed and repeated tubulin genes in Leishmania major. Molecular and Biochemical Parasitology 25, 279–91.Google Scholar
Tenter, A. M. & Friedhoff, K. T. (1986). Serodiagnosis of experimental and natural Babesia equi and Babesia caballi infections. Veterinary Parasitology 20, 4961.CrossRefGoogle Scholar
Tschudi, C., Young, A. S., Ruben, L., Patton, C. L. & Richards, F. F. (1985). Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mRNAs with a common 5' leader sequence. Proceedings of the National Academy of Sciences, USA 82, 39984002.CrossRefGoogle ScholarPubMed
Vieira, J. & Messing, J. (1982). The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–68.CrossRefGoogle ScholarPubMed
Weiland, G. (1986). Species-specific serodiagnosis of equine piroplasma infections by means of complement fixation test (CFT), immunofluorescence (IIF), and enzyme-linked immunosorbent assay (ELISA). Veterinary Parasitology 20, 43–8.CrossRefGoogle ScholarPubMed
Zolg, J. W., Scott, E. D. & Wendlinger, M. (1988). High salt lysates: a simple method to store blood samples without refrigeration for subsequent use with DNA probes. American Journal of Tropical Medicine and Hygiene 39, 3340.CrossRefGoogle ScholarPubMed