Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T07:38:38.118Z Has data issue: false hasContentIssue false

Does the dilution effect generally occur in animal diseases?

Published online by Cambridge University Press:  11 January 2017

ZHENG Y. X. HUANG*
Affiliation:
College of Life Sciences, Nanjing Normal University, 210046 Nanjing, China Resource Ecology Group, Wageningen University, 6708PB Wageningen, the Netherlands
YANG YU
Affiliation:
Centre for Crop Systems Analysis, Wageningen University, 6700AK Wageningen, the Netherlands
FRANK VAN LANGEVELDE
Affiliation:
Resource Ecology Group, Wageningen University, 6708PB Wageningen, the Netherlands
WILLEM F. DE BOER
Affiliation:
Resource Ecology Group, Wageningen University, 6708PB Wageningen, the Netherlands
*
*Corresponding author: Nanjing Normal University, Wenyuan Road 1, 210023 Nanjing, China. E-mail: zhengyxhuang@gmail.com

Summary

The dilution effect (DE) has been reported in many diseases, but its generality is still highly disputed. Most current criticisms of DE are related to animal diseases. Particularly, some critical studies argued that DE is less likely to occur in complex environments. Here our meta-analyses demonstrated that the magnitude of DE did not differ between animal vs plant diseases. Moreover, DE generally occurs in all three subgroups of animal diseases, namely direct-transmitted diseases, vector-borne diseases and diseases caused by parasites with free-living stages. Our findings serve as an important contribution to understanding the generality of DE.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, B. F., Langerhans, R. B., Ryberg, W. A., Landesman, W. J., Griffin, N. W., Katz, R. S., Oberle, B. J., Schutzenhofer, M. R., Smyth, K. N., de St Maurice, A., Clark, L., Crooks, K. R., Hernandez, D. E., McLean, R. G., Ostfeld, R. S. and Chase, J. M. (2009). Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158, 699708.CrossRefGoogle ScholarPubMed
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D. and Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature 486, 5967.CrossRefGoogle ScholarPubMed
Civitello, D. J., Cohen, J., Fatima, H., Halstead, N. T., Liriano, J., McMahon, T. A., Ortega, C. N., Sauer, E. L., Sehgal, T. and Young, S. (2015). Biodiversity inhibits parasites: broad evidence for the dilution effect. Proceedings of the National Academy of Sciences of the United States of America 112, 86678671.CrossRefGoogle ScholarPubMed
Clay, C. A., Lehmer, E. M., St Jeor, S. and Dearing, M. D. (2009). Testing mechanisms of the dilution effect: deer mice encounter rates, Sin Nombre virus prevalence and species diversity. Ecohealth 6, 250259.CrossRefGoogle ScholarPubMed
Huang, Z. Y. X., de Boer, W. F., van Langevelde, F., Olson, V., Blackburn, T. M. and Prins, H. H. T. (2013 a). Species’ life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect. PLoS ONE 8, e54341.CrossRefGoogle ScholarPubMed
Huang, Z. Y. X., de Boer, W. F., van Langevelde, F., Xu, C., Ben Jebara, K., Berlingieri, F. and Prins, H. H. T. (2013 b). Dilution effect in bovine tuberculosis: risk factors for regional disease occurrence in Africa. Proceedings of the Royal Society B – Biological Sciences 280, 20130624.CrossRefGoogle ScholarPubMed
Huang, Z. Y. X., Van Langevelde, F., Estrada-PeÑA, A., SuzÁN, G. and De Boer, W. F. (2016). The diversity–disease relationship: evidence for and criticisms of the dilution effect. Parasitology 143, 10751086.CrossRefGoogle ScholarPubMed
Johnson, P. T. J. and Thieltges, D. W. (2010). Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961970.CrossRefGoogle ScholarPubMed
Johnson, P. T. J., Lund, P. J., Hartson, R. B. and Yoshino, T. P. (2009). Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proceedings of the Royal Society B – Biological Sciences 276, 16571663.CrossRefGoogle ScholarPubMed
Johnson, P. T. J., Preston, D. L., Hoverman, J. T. and Richgels, K. L. D. (2013). Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230233.CrossRefGoogle ScholarPubMed
Johnson, P. T., Ostfeld, R. S. and Keesing, F. (2015). Frontiers in research on biodiversity and disease. Ecology Letters 18, 11191133.CrossRefGoogle ScholarPubMed
Keesing, F., Holt, R. D. and Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters 9, 485498.CrossRefGoogle ScholarPubMed
Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E. and Mitchell, C. E. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647652.CrossRefGoogle ScholarPubMed
Moore, J. (2002). Parasites and the Behavior of Animals. Oxford University Press, New York.CrossRefGoogle Scholar
Ostfeld, R. S. and Keesing, F. (2012). Effects of host diversity on infectious disease. Annual Review of Ecology, Evolution, and Systematics 43, 157182.CrossRefGoogle Scholar
Pongsiri, M. J., Roman, J., Ezenwa, V. O., Goldberg, T. L., Koren, H. S., Newbold, S. C., Ostfeld, R. S., Pattanayak, S. K. and Salkeld, D. J. (2009). Biodiversity loss affects global disease ecology. Bioscience 59, 945954.CrossRefGoogle Scholar
Randolph, S. E. and Dobson, A. D. M. (2012). Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139, 847863.CrossRefGoogle ScholarPubMed
Salkeld, D. J., Padgett, K. A. and Jones, J. H. (2013). A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecology Letters 16, 679686.CrossRefGoogle ScholarPubMed
Suzán, G., Marce, E., Giermakowski, J. T., Mills, J. N., Ceballos, G., Ostfeld, R. S., Armien, B., Pascale, J. M. and Yates, T. L. (2009). Experimental evidence for reduced rodent diversity causing increased Hantavirus prevalence. PLoS ONE 4, e5461.CrossRefGoogle ScholarPubMed
Wood, C. L. and Lafferty, K. D. (2013). Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends in Ecology & Evolution 28, 239247.CrossRefGoogle ScholarPubMed
Wood, C. L., Lafferty, K. D., DeLeo, G., Young, H. S., Hudson, P. J. and Kuris, A. M. (2014). Does biodiversity protect humans against infectious disease? Ecology 95, 817832.CrossRefGoogle ScholarPubMed
Young, H., Griffin, R. H., Wood, C. L. and Nunn, C. L. (2013). Does habitat disturbance increase infectious disease risk for primates? Ecology Letters 16, 656663.CrossRefGoogle ScholarPubMed