Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:41:24.399Z Has data issue: false hasContentIssue false

Dynamic changes of DNA sequences in Schistosoma mansoni in the course of development

Published online by Cambridge University Press:  06 April 2009

T. Nara
Affiliation:
Institute of Basic Medical Sciences, University of Tsukaba, Ibaraki 305, Japan
Y. Iwamura
Affiliation:
Institute of Basic Medical Sciences, University of Tsukaba, Ibaraki 305, Japan
M. Tanaka
Affiliation:
Institute of Basic Medical Sciences, University of Tsukaba, Ibaraki 305, Japan
Y. Irie
Affiliation:
Institute of Basic Medical Sciences, University of Tsukaba, Ibaraki 305, Japan
K. Yasuraoka
Affiliation:
Institute of Basic Medical Sciences, University of Tsukaba, Ibaraki 305, Japan

Summary

Deletion and/or amplification of DNA sequences in Schistosoma mansoni were demonstrated by Southern blot analysis. Total cellular DNAs and genomic clones derived from S. mansoni miracidia, adult males and females were used as probes. EndonucleaseBamHI-restricted DNAs from miracidia, adult males and females of both S. mansoni and S. japonicum were reacted to each probe. Hybridization with a total cellular DNA from S. mansoni miracidia as a probe showed elimination of signals in S. mansoni adults. On the other hand, blot analysis using a total cellular DNA from S. mansoni adult males as a probe revealed elimination of hybridization signals in S. mansoni miracidia.Hybridization with a clone SmE15 DNA from S. mansoni miracidia as a probe showed no signal in the DNAs from 5. mansoni adults, indicating these sequences deleted in adults. Hybridization experiments using the probes SmF25 and SmM51 which are 13 and 2-2 kb fragments cloned from S. mansoni adult females and males respectively, demonstrated no signal to DNA from S. mansoni miracidia.Our data suggested the existence of stage-specific DNA sequences in 5. mansoni. We propose a model for multiple-step rearrangement of DNA sequences in S. mansoni during the course of development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austerberry, C. F., Allis, C. D. & Yao, M.-C. (1984). Specific DNA rearrangements in synchronously developing nuclei of Tetrahymena. Proceedings of the National Academy of Sciences, USA 81, 7383–7.CrossRefGoogle ScholarPubMed
Beermann, S. (1977). The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60, 297344.CrossRefGoogle ScholarPubMed
Blanton, R. E., Davis, A. H., Rottman, F., Maurer, R. & Mahmoud, A. A. F. (1985). Three developmentally regulated genes identified by clones from an adult Schistosoma mansoni cDNA expression library. Transactions of the Association of American Physicians 98, 101–6.Google Scholar
Bobek, L., Rekosh, D. M., Van Keulen, H. & Lo Verde, P. T. (1986). Characterization of a female-specific cDNA derived from a developmentally regulated mRNA in the human blood fluke Schistosoma mansoni. Proceedings of the National Academy of Sciences, USA 83, 5544–8.Google Scholar
Callahan, R. C., Shalke, G. & Gorovsky, M. A. (1984). Developmental rearrangements associated with a single type of expressed α-tubulin genes in Tetrahymena. Cell 36, 441–5.CrossRefGoogle ScholarPubMed
Davis, A. H., Blanton, R. E., Rottman, F., Maurer, R. & Mahmoud, A. A. F. (1986). Isolation of cDNA clones for differentially expressed genes of the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences, USA 83, 5534–8.Google Scholar
Denhardt, D. T. (1966). A membrane-filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23, 641–6.Google Scholar
Dresden, M. H. & Payne, D.C. (1981). A sieving method for the collection of schistosome eggs from mouse intestines. Journal of Parasitology 67, 450–2.Google Scholar
Dubois, A. M. (1932). Elimination of chromosomes during cleavage in the eggs of Sciara. Proceedings of the National Academy of Sciences, USA 18, 352–4.Google Scholar
Haward, E. A. & Blackburn, E. H. (1985). Reproducible and variable genomic rearrangements occur in the developing somatic nucleus of the ciliate Tetrahymena thermophila. Molecular and Cellular Biology 5, 2039–50.Google Scholar
Iwamura, Y., Sakai, M. & Muramatsu, M. (1982). Rearrangement of repeated DNA sequences during development of macronucleus in Tetrahymena thermophila. Nucleic Acid Research 10, 4279–91.CrossRefGoogle ScholarPubMed
Johnson, K. S., Taylor, D.W. & Cordingley, J.S. (1987). Possible eggshell protein gene from Schistosoma mansoni. Molecular and Biochemical Parasitology 22, 89100.CrossRefGoogle ScholarPubMed
Klobutcher, L. A., Jahn, C. L. & Prescott, D. M. (1984). Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Cell 36, 1045–55.CrossRefGoogle ScholarPubMed
Knight, M., Simpson, A. J. G., Payares, G., Chaudri, M. & Smithers, S. R. (1984). Cell-free synthesis of Schistosoma mansoni surface antigens: stage specificity of their expression. The EMBO Journal 3, 213–19.CrossRefGoogle ScholarPubMed
Laski, F. A., Rio, D. C & Rubin, C. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. (1979). Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature, London 280, 288–94.Google Scholar
Seidman, J. C. & Leder, P. (1978). The arrangement and rearrangement of antibody genes. Nature, London 276, 790–5.CrossRefGoogle ScholarPubMed
Simpson, A. J. G. & Knight, M. (1986). Cloning of a major developmentally regulated gene expressed in mature females of Schistosoma mansoni. Molecular and Biochemical Parasitology 18, 2535.CrossRefGoogle Scholar
Simpson, A. J. C., Chaudri, M., Knight, M., Kelly, C., Rumjanek, F., Martin, S. & Smithers, S. R. (1987). Characterisation of the structure and expression of the gene encoding a major female specific polypeptide of Schistosoma mansoni. Molecular and Biochemical Parasitology 22, 169–76.CrossRefGoogle Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Spradling, A. C. & Mahowald, A. P. (1980). Amplification of genes for chorion proteins during oogenesis in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 77, 1096–100.CrossRefGoogle ScholarPubMed
Stein, L. D. & David, J. R. (1986). Cloning of a developmentally regulated tegument antigen of Schistosoma mansoni. Molecular and Biochemical Parasitology 20, 253–64.Google Scholar
Tobler, H., Smith, K. D. & Ursprung, H. (1972). Molecular aspects of chromatin elimination in Ascaris lumbricoides. Developmental Biology 27, 190203.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Cornelissen, A. W. C. A., Michels, P. A. M. & Borst, P. (1984). Chromosome rearrangements in Trypanosoma brucei. Cell 39, 213–21.Google Scholar
Yao, M.-C., Choi, J., Yokoyama, S., Austerberry, C. F. & Yao, C-H. (1984). DNA elimination in Tetrahymena: A developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 36, 433–40.CrossRefGoogle ScholarPubMed