Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T04:51:48.634Z Has data issue: false hasContentIssue false

Echinococcus granulosus (Cestoda): uptake of L-amino acids by secondary hydatid cysts

Published online by Cambridge University Press:  06 April 2009

S. A. Jeffs
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG

Summary

The uptake of cycloleucine, L-proline, L-alanine and L-threonine by secondary hydatid cysts of Echinococcus granulosus (U.K. horse strain 3–8 mm in diameter, derived from Balb/c mice infected 300–400 days previously) occurs by passive diffusion into the cyst wall (laminated layer plus germinal layer) and by mediated mechanisms into the fluid-filled interior. The maximal concentrations of these compounds are achieved after incubation for 2 h in vitro and approach those in vivo. Kt and Vmax values describing the uptake of these compounds are given. The flux rates for these compounds are extremely slow compared to those obtained with the protoscolex. A rationale for standardizing the experimental method for uptake studies with hydatid cysts is described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahr, J. M., Frayha, G. J. & Hajjar, J-J. (1979). Mechanism of cholesterol absorption by the hydatid cyst of Echinococcus granulosus (Cestoda). Comparative Biochemistry and Physiology 62A, 485–90.CrossRefGoogle Scholar
Benito, A. A. (1984). Hydatidosis of sheep. II. Levels of glucose, lipids and proteins in the hydatid liquid. Archivos de Zootecnia 33, 163–9.Google Scholar
Benito, A. A., Gomez, M. F. & Gaitan, U. A. (1983). Hydatidosis of sheep. I. The pH, and the levels of sodium and potassium in the hydatid liquid. Archivos de Zootecnia 32, 279–84.Google Scholar
Bridges, J. F., Arme, C. & Richards, K. S. (1984). Echinococcus granulosus: permeability studies on the hydatid cyst. Annals of Tropical Medicine and Parasitology 78, 205.Google Scholar
Chordi, A. & Kagan, I. (1965). Identification and characterization of antigenic component of sheep hydatid fluid by immunoelectrophoresis. Journal of Parasitology 51, 6371.CrossRefGoogle ScholarPubMed
Coltorti, E. A. & Varela-Diaz, V. M. (1972). IgG levels and host specificity in hydatid cyst fluid. Journal of Parasitology 58, 753–6.CrossRefGoogle ScholarPubMed
Eckert, J. (1986). Prospects for treatment of the metacestode stage of Echinococcus. In Biology of Echinococcus and Hydatid Disease (ed. Thompson, R. C. A.), pp. 250–84. London: George Allen & Unwin.Google Scholar
Edwards, G. T. (1982). Host IgG in equine hydatid cyst fluid. Annals of Tropical Medicine and Parasitology 76, 485–7.CrossRefGoogle ScholarPubMed
Frayha, G. J. & Haddad, R. (1980). Comparative chemical composition of protoscolices and hydatid cyst fluid of Echinococcus granulosus (Cestoda). International Journal for Parasitology 10, 359–64.CrossRefGoogle ScholarPubMed
Hustead, S. T. & Williams, J. F. (1977). Permeability studies on taeniid metacestodes. I. Uptake of proteins by larval stages of Taenia taeniformis, T. crassiceps and Echinococcus granulosus. Journal of Parasitology 63, 314–21.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1985 a). Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes. Comparative Biochemistry and Physiology 81A, 495–9.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1985 b). Hymenolepis diminuta: characterization of the neutral amino acid transport loci of the metacestode. Comparative Biochemistry and Physiology 81A, 387–90.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1986 a). Echinococcus granulosus: absorption of cycloleucine and α-aminoisobutyric acid by protoscoleces. Parasitology 92, 153–63.CrossRefGoogle ScholarPubMed
Jeffs, S. A. & Arme, C. (1986 b). Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces. Parasitology 95, 71–8.CrossRefGoogle Scholar
Kammerer, W. S. & Miller, K. L. (1981). Echinococcus granulosus: permeability of hydatid cysts to mebendazole in mice. International Journal for Parasitology 11, 183–5.CrossRefGoogle ScholarPubMed
Krvavica, S., Martincic, T. & Asaj, R. (1959). Metabolism of amino acids in some parasites. II. Amino acids in the hydatid fluid and germinal layer of Echinococcus. Veterinarski Archiv 29, 314–21.Google Scholar
Lineweaver, H. & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society 56, 658–66.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Luder, P. J., Witassek, F., Weigand, K., Eckert, J. & Bircher, J. (1985). Treatment of cystic echinococcosis (Echinococcus granulosus) with mebendazole: assessment of bound and free drug levels in cyst fluid and of parasite vitality in operative specimens. European Journal of Clinical Pharmacology 28, 279–85.CrossRefGoogle ScholarPubMed
Lussier, P. E., Podesta, R. B. & Mettrick, D. F. (1979). Hymenolepis diminuta: Na+-dependent and Na+-independent components of neutral amino acid transport. Journal of Parasitology 65, 842–8.CrossRefGoogle Scholar
Pappas, P. W. & Read, C. P. (1973). Permeability and membrane transport in the larva of Taenia crassiceps. Parasitology 66, 3342.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1975). Membrane transport in helminth parasites: a review. Experimental Parasitology 37, 469530.CrossRefGoogle ScholarPubMed
Pappas, P. W., Uglem, G. L. & Read, C. P. (1973). Mechanisms and specificity of amino acid transport in Taenia crassiceps larvae (Cestoda). International Journal of Parasitology 3, 641–51.CrossRefGoogle ScholarPubMed
Podesta, R. B., Evans, W. S. & Stallard, H. E. (1977). The effect of ouabain on tissue electrolyte concentrations and active nonelectrolyte transport across the epithelial membrane of Hymenolepis diminuta and H. microstoma (Cestoda). Experimental Parasitology 43, 2538.CrossRefGoogle Scholar
Read, C. P., Rothman, A. H. & Simmons, J. E. Jr (1963). Studies on membrane transport, with special reference to parasite-host integration. Annals of the New York Academy of Science 113, 154205.CrossRefGoogle ScholarPubMed
Reisin, I. L. & de Fala, C. I. P. (1984). Membrane permeability of secondary hydatid cysts of Echinococcus granulosus. Determination of the water diffusional and osmotic permeability components through a syncytial membrane. Molecular and Biochemical Parasitology 12, 101–16.CrossRefGoogle Scholar
Reisin, I. L., Rabito, C. A., Rotunno, C. A. & Cereijido, M. (1977). The permeability of the membrane of experimental secondary cysts of Echinococcus granulosus to [14C]mebendazole. International Journal for Parasitology 7, 189–94.CrossRefGoogle ScholarPubMed
Richards, K. S. (1984). Echinococcus granulosus equinus: the histochemistry of the laminated layer of the hydatid cyst. Folia Histochemica et Cytochemica 22, 21–3.Google ScholarPubMed
Richards, K. S., Arme, C. & Bridges, J. F. (1983). Echinococcus granulosus equinus: an ultrastructural study of murine tissue response to hydatid cysts. Parasitology 86, 407–17.CrossRefGoogle ScholarPubMed
Richards, K. S., Arme, C. & Bridges, J. F. (1984). Echinococcus granulosus equinus: variation in the germinal layer of murine hydatids and evidence of autophagy. Parasitology 89, 3547.CrossRefGoogle ScholarPubMed
Richards, K. S. & Rogan, M. T. (1986). Surface ultrastructure of a strobilate form of the horse strain Echinococcus granulosus cultured in a monophasic medium. Annals of Tropical Medicine and Parasitology 80, 267–8.CrossRefGoogle Scholar
Rotunno, C. A., Kammerer, W. S., Esandi, M. V. P. & Cereijido, M. (1974). Studies on the permeability to water, sodium, and chloride of the hydatid cyst of Echinococcus granulosus. Journal of Parasitology 60, 613–20.CrossRefGoogle ScholarPubMed
Sanchez, A. F. & Sanchez, C. A. (1971). Estudio de algunas propiedades fisicas y componentes quinicas del liquido y pared germinativa de qistes hidatidicas de diversas especies y de diferente localizacion. Revista Iberica Parasitologia 31, 347–66.Google Scholar
Schwabe, C. W. (1959). Host-parasite relationships in echinococcosis. I. Observation on the permeability of the hydatid cyst wall. American Journal of Tropical Medicine and Hygiene 8, 22–8.CrossRefGoogle ScholarPubMed
Schwabe, C. W., Koussa, M. & Accra, A. N. (1961). Host-parasite relationships in echinococcosis. V. Acetylcholinesterase and permeability regulation in the hydatid cyst wall. Comparative Biochemistry and Physiology 2, 161–72.CrossRefGoogle Scholar
Smyth, J. D. (1976). Introduction to Animal Parasitology. London: Hodder & Stoughton.Google Scholar
Smyth, J. D., Miller, H. J. & Hawkins, A. B. (1967). Further analysis of the factors controlling strobilization, differentiation and maturation of Echinococcus granulosus in vitro. Experimental Parasitology 21, 3141.CrossRefGoogle ScholarPubMed
Woodtli, W., Bircher, J., Witassek, F., Eckert, J., Wuthrich, B. & Ammann, R. W. (1985). Effect of plasma mebendazole concentrations in the treatment of human echinococcosis. American Journal of Tropical Medicine and Hygiene 34, 754–60.CrossRefGoogle ScholarPubMed