Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T20:21:51.609Z Has data issue: false hasContentIssue false

Echinococcus multilocularis and other zoonotic parasites in red foxes in Estonia

Published online by Cambridge University Press:  09 June 2016

LEIDI LAURIMAA
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
EPP MOKS
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
EGLE SOE
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
HARRI VALDMANN
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
URMAS SAARMA*
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
*
*Corresponding author. Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. E-mail: urmas.saarma@ut.ee

Summary

Red fox (Vulpes vulpes) is the most widely distributed canid in the world and an important source of multiple zoonotic pathogens capable of causing life-threatening diseases, such as rabies and alveolar echinococcosis. Informing general public of potential risks related to foxes is becoming more important since the fox densities have increased in many countries and the species is colonizing urban areas in Europe and around the world with increasing pace, bringing zoonotic pathogens to the immediate neighbourhood of humans and their companion animals. The aim of this study was to examine the parasite fauna of red foxes in Estonia. We found in Estonian foxes a total of 17 endoparasite taxa, including ten zoonotic species. All the analysed individuals were infected and the average parasite species richness was 6·37. However, the infection rates varied to a very large extent for different parasite species, ranging from 0·9 to 91·5%. Of zoonotic species, the highest infection rate was observed for Alaria alata (90·7%), Eucoleus aerophilus (87·6%) and Uncinaria stenocephala (84·3%). The prevalence of tapeworm Echinococcus multilocularis, a causative agent for alveolar echinococcosis, was also relatively high (31·5%), presenting a potential risk to human health.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abuladze, K. I. (1964). Common Cestodology, Part 4: Taeniidae—Tapeworms of Animals and Humans and Causal Agents of their Illnesses. Nauka, Moscow. (in Russian)Google Scholar
Arlian, L. G. (1989). Biology, host relations, and epidemiology of Sarcoptes scabiei . Annual Review of Entomology 34, 139161.CrossRefGoogle ScholarPubMed
Bateman, P. W. and Fleming, P. A. (2012). Big city life: carnivores in urban environments. Journal of Zoology 287, 123.CrossRefGoogle Scholar
Bružinskaite-Schmidhalter, R., Šarkunas, M., Malakauskas, A., Mathis, A., Torgerson, P. R. and Deplazes, P. (2012). Helminths of red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in Lithuania. Parasitology 139, 120127.Google Scholar
Cavallini, P. (1995). Variation in the body size of the red fox. Annales Zoologici Fennici 32, 421427.Google Scholar
Conraths, F. J. and Deplazes, P. (2015). Echinococcus multilocularis: epidemiology, surveillance and state-of-the-art diagnostics from a veterinary public health perspective. Veterinary Parasitology 213, 149161.Google Scholar
Davidson, R. K., Romig, T., Jenkins, E., Tryland, M. and Robertson, L. J. (2012). The impact of globalisation on the distribution of Echinococcus multilocularis . Trends in Parasitology 28, 239247.Google Scholar
Deplazes, P., Hegglin, D., Gloor, S. and Romig, T. (2004). Wilderness in the city: the urbanization of Echinococcus multilocularis . Trends in Parasitology 20, 7784.Google Scholar
Eckert, J., Gemmell, M. A., Meslin, F.-X. and Pawlowski, Z. S. (eds.) (2001). WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. WHO/OIE, Paris. http://apps.who.int/iris/bitstream/10665/42427/1/929044522X.pdf Google Scholar
Fuglei, E., Stien, A., Yoccoz, N. G., Ims, R. A., Eide, N. E., Prestrud, P., Deplazes, P. and Oksanen, A. (2008). Spatial distribution of Echinococcus multilocularis, Svalbard, Norway. Emerging Infectious Diseases 14, 7375.CrossRefGoogle ScholarPubMed
Gloor, S., Bontadina, F., Hegglin, D., Deplazes, P. and Breitenmoser, U. (2001). The rise of urban fox populations in Switzerland. Mammalian Biology 66, 155164.Google Scholar
Harris, S. and Rayner, J. M. V. (1986). Urban fox (Vulpes vulpes) population estimates and habitat requirements in several British cities. Journal of Animal Ecology 55, 575591.CrossRefGoogle Scholar
Heptner, V. G. and Naumov, N. P. (1998). Mammals of the Soviet Union Vol. II Part 1a. Sirenia and Carnivora (Sea cows; Wolves and Bears), pp. 82123. Amerind Publishing Co, New Delhi.Google Scholar
Heukelbach, J. and Feldmeier, H. (2006). Scabies. Lancet 367, 17671774.CrossRefGoogle ScholarPubMed
Hofer, S., Gloor, S., Müller, U., Mathis, A., Hegglin, D. and Deplazes, P. (2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 120, 135142.CrossRefGoogle ScholarPubMed
Hrčkova, G., Miterpakova, M., O'Connor, A., Šnabel, V. and Olson, P. D. (2011). Molecular and morphological circumscription of Mesocestoides tapeworms from red foxes (Vulpes vulpes) in central Europe. Parasitology 138, 638647.Google Scholar
Jenkins, D. J. and Craig, N. A. (1992). The role of foxes Vulpes vulpes in the epidemiology of Echinococcus granulosus in urban environments. Medical Journal of Australia 157, 754756.Google Scholar
Kauhala, K. and Kowalczyk, R. (2011). Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Current Zoology 57, 584598.Google Scholar
Keidans, P., Kruklite, A. and Keidane, D. (2005). Endoparasites of red foxes in Latvia. Bulletin of the Scandinavian-Baltic Society for Parasitology 14, 81.Google Scholar
Knapp, J., Nakao, M., Yanagida, T., Okamoto, M., Saarma, U., Lavikainen, A. and Ito, A. (2011). Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 61, 628638.Google Scholar
Knapp, J., Gottstein, B., Saarma, U. and Millon, L. (2015). Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: from fundamental knowledge to health ecology. Veterinary Parasitology 213, 8591.Google Scholar
Kozlov, D. P. (1977). Key of Helminths of Carnivores. Nauka, Moscow. (in Russian)Google Scholar
Laloševic, D., Laloševic, V., Klem, I., Stanojev-Jovanovic, D. and Pozio, E. (2008). Pulmonary capillariasis miming bronchial carcinoma. The American Journal of Tropical Medicine and Hygiene 78, 1416.Google Scholar
Laurimaa, L., Davison, J., Plumer, L., Süld, K., Oja, R., Moks, E., Keis, M., Hindrikson, M., Kinkar, L., Laurimäe, T., Abner, J., Remm, J., Anijalg, P. and Saarma, U. (2015 a). Non-invasive molecular diagnostics identifies Echinococcus multilocularis spillover to an urban area in Estonia. Emerging Infectious Diseases 21, 163164.Google Scholar
Laurimaa, L., Süld, K., Moks, E., Valdmann, H., Umhang, G., Knapp, J. and Saarma, U. (2015 b). First report of the zoonotic tapeworm Echinococcus multilocularis in raccoon dogs in Estonia, and comparisons with other countries in Europe. Veterinary Parasitology 212, 200205.CrossRefGoogle ScholarPubMed
Laurimaa, L., Davison, J., Süld, K., Plumer, L., Oja, R., Moks, E., Keis, M., Hindrikson, M., Kinkar, L., Laurimäe, T., Abner, J., Remm, J., Anijalg, P. and Saarma, U. (2015 c). First report of highly pathogenic Echinococcus granulosus genotype G1 in dogs in European urban environment. Parasites & Vectors 8, 182.CrossRefGoogle ScholarPubMed
Laurimaa, L., Süld, K., Davison, J., Moks, E., Valdmann, H. and Saarma, U. (2016). Alien species and their zoonotic parasites in native and introduced ranges: the raccoon dog example. Veterinary Parasitology 219, 2433.Google Scholar
Letkova, V., Lazar, P., Čurlik, J., Goldova, M., Kočišova, A., Košuthova, L. and Mojžišova, J. (2006). The red fox (Vulpes vulpes L.) as a source of zoonoses. Veterinarski Arhiv 76 (Suppl.), S73S81.Google Scholar
Macdonald, D. W. and Reynolds, J. C. (2008). Vulpes vulpes. The IUCN Red List of Threatened Species 2008: e.T23062A9412884. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T23062A9412884.en Google Scholar
Marcinkute, A., Šarkunas, M., Moks, E., Saarma, U., Jokelainen, P., Bagrade, G., Laivacuma, S., Strupas, K., Sokolovas, V. and Deplazes, P. (2015). Echinococcus infections in the Baltic region. Veterinary Parasitology 213, 121131.Google Scholar
Moks, E. (2008). Tapeworm parasites Echinococcus multilocularis and E. granulosus in Estonia: phylogenetic relationships and occurrence in wild carnivores and ungulates. PhD thesis. University of Tartu.Google Scholar
Moks, E., Saarma, U. and Valdmann, H. (2005). Echinococcus multilocularis in Estonia. Emerging Infectious Diseases 11, 19731974.CrossRefGoogle ScholarPubMed
Moks, E., Jõgisalu, I., Saarma, U., Talvik, H., Järvis, T. and Valdmann, H. (2006). Helminthologic survey of the wolf (Canis lupus) in Estonia, with an emphasis on Echinococcus granulosus . Journal of Wildlife Diseases 42, 359365.Google Scholar
Moks, E., Jõgisalu, I., Valdmann, H. and Saarma, U. (2008). First report of Echinococcus granulosus G8 in Eurasia and a reappraisal of the phylogenetic relationships of “genotypes” G5–G10. Parasitology 135, 647654.Google Scholar
Newman, T. J., Baker, P. J. and Harris, S. (2002). Nutritional condition and survival of red foxes with sarcoptic mange. Canadian Journal of Zoology 80, 154161.CrossRefGoogle Scholar
Oja, R. (2011). Side effects of supplementary feeding of wild boar (Sus scrofa) on ground-nesting birds, other mammals and plants. Master thesis. University of Tartu (in Estonian).Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. (2015). Vegan: community ecology package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan Google Scholar
Parre, J. (1985). Veterinaarparasitoloogia. Valgus, Tallinn. (in Estonian).Google Scholar
Pärtel, A. (2013). Self-declaration by Estonia on the recovery of its rabies-free status. OIE Bulletin 3, 5861.Google Scholar
Plumer, L., Davison, J. and Saarma, U. (2014). Rapid urbanization of red foxes in Estonia: distribution, behaviour, attacks on domestic animals, and health-risks related to zoonotic diseases. PLoS ONE 9, e115124.Google Scholar
R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Google Scholar
Saarma, U., Jõgisalu, I., Moks, E., Varcasia, A., Lavikainen, A., Oksanen, A., Simsek, S., Andresiuk, V., Denegri, G., Gonzalez, L. M., Ferrer, E., Garate, T., Rinaldi, L. and Maravilla, P. (2009). A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 136, 317328.Google Scholar
Saeed, I., Maddox-Hyttel, C., Monrad, J. and Kapel, C. M. O. (2006). Helminths of red foxes (Vulpes vulpes) in Denmark. Veterinary Parasitology 139, 168179.Google Scholar
Schöffel, I., Schein, E., Wittstadt, U. and Hentsche, J. (1991). Parasite fauna of red foxes in Berlin (West). Berliner und Münchener Tierärztliche Wochenschrift 104, 153157.Google Scholar
Segovia, J. M., Torres, J. and Miquel, J. (2004). Helminth parasites of the red fox (Vulpes vulpes L., 1758) in the Iberian Peninsula: an ecological study. Acta Parasitologica 49, 6779.Google Scholar
Shimalov, V. V. and Shimalov, V. T. (2003). Helminth fauna of the red fox (Vulpes vulpes Linnaeus, 1758) in southern Belarus. Parasitology Research 89, 7778.Google Scholar
Smith, G. C., Gangadharan, B., Taylor, Z., Laurenson, M. K., Bradshaw, H., Hide, G., Hughes, J. M., Dinkel, A., Romig, T. and Craig, P. S. (2003). Prevalence of zoonotic important parasites in the red fox (Vulpes vulpes) in Great Britain. Veterinary Parasitology 118, 133142.Google Scholar
Stone, L. and Roberts, A. (1990). The checkerboard score and species distributions. Oecologia 85, 7479.Google Scholar
Süld, K., Valdmann, H., Laurimaa, L., Soe, E., Davison, J. and Saarma, U. (2014). An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in northern Europe. PLoS ONE 9(5), e96358.Google Scholar
Szell, Z., Marucci, G., Pozio, E. and Sreter, T. (2013). Echinococcus multilocularis and Trichinella spiralis in golden jackals (Canis aureus) of Hungary. Veterinary Parasitology 197, 393396.Google Scholar
Tamminga, N., Bierman, W. F. W. and de Vries, P. J. (2009). Cutaneous larva migrans acquired in Brittany, France. Emerging Infectious Diseases 15, 18561858.Google Scholar
Thompson, R. C. (1983). The susceptibility of the European red fox (Vulpes vulpes) to infection with Echinococcus granulosus of Australian sheep origin. Annals of Tropical Medicine and Parasitology 77, 7582.Google Scholar
Umhang, G., Forin-Wiart, M.-A., Hormaz, V., Caillot, C., Boucher, J.-M., Poulle, M.-L. and Franck, B. (2015). Echinococcus multilocularis detection in the intestines and feces of free-ranging domestic cats (Felis s. catus) and European wildcats (Felis s. silvestris) from northeastern France. Veterinary Parasitology 214, 7579.Google Scholar
Veeroja, R. and Männil, P. (2015). Status of Game Populations in Estonia and Proposal for Hunting in 2015. Estonian Environment Agency, Tartu, pp. 6769. (in Estonian)Google Scholar
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S., 4th Edn. Springer, New York. ISBN 0-387-95457-0.Google Scholar
Vos, A. (1995). Population dynamics of the red fox (Vulpes vulpes) after the disappearance of rabies in county Garmisch-Partenkirchen, Germany, 1987–1992. Annales Zoologici Fennici 32, 9397.Google Scholar
Vuitton, D. A., Demonmerot, F., Knapp, J., Richou, C., Grenouillet, F., Chauchet, A., Vuitton, L., Bresson-Hadni, S. and Millon, L. (2015). Clinical epidemiology of human AE in Europe. Veterinary Parasitology 213, 110120.Google Scholar
Wasiluk, A. (2009). Alariosis – newly diagnosed trematodiasis. Wiadomosci Parazytologiczne 55, 349352. (in Polish with English summary)Google Scholar
Ziadinov, I., Deplazes, P., Mathis, A., Mutunova, B., Abdykerimov, K., Nurgaziev, R. and Torgerson, P. R. (2010). Frequency distribution of Echinococcus multilocularis and other helminths of foxes in Kyrgyzstan. Veterinary Parasitology 171, 286292.Google Scholar
Zvegintsova, N. S., Dumenko, V. P. and Varodi, E. I. (2007). Helminths of the red fox (Vulpes vulpes) in the Askania Nova Biosphere Reserve (Ukraine). Vestnik Zoologii 41, 153157. (in Russian with English summary)Google Scholar
Supplementary material: File

Laurimaa supplementary material

Table S1

Download Laurimaa supplementary material(File)
File 21 KB