Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T11:21:08.031Z Has data issue: false hasContentIssue false

Effect of intra-erythrocytic magnesium ions on invasion by Plasmodium falciparum

Published online by Cambridge University Press:  06 April 2009

S. J. Field
Affiliation:
Medical Research Council Muscle and Cell Motility Unit, King's College, 26–29 Drury Lane, London WC2B 5RL
K. Rangachari
Affiliation:
Medical Research Council Muscle and Cell Motility Unit, King's College, 26–29 Drury Lane, London WC2B 5RL National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
A. R. Dluzewski
Affiliation:
Medical Research Council Muscle and Cell Motility Unit, King's College, 26–29 Drury Lane, London WC2B 5RL
R. J. M. Wilson
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
W. B. Gratzer
Affiliation:
Medical Research Council Muscle and Cell Motility Unit, King's College, 26–29 Drury Lane, London WC2B 5RL

Extract

Exclusion of magnesium ions from resealed ghosts or their extraction from intact human red cells by means of an ionophore results in a reversible drop in susceptibility to invasion by Plasmodium falciparum merozoites in vitro. Resealed ghosts, containing magnesium-ATP and diluted cytosol, are invaded with high efficiency only when the original hypotonic lysis is carried Out in the presence of magnesium ions. This effect is not related to the loss of membrane-associated constituents when magnesium ions are absent. Ghosts containing calcium ions, together with the protective agent, flunarizine, were essentially resistant to invasion; this effect is again at least partially reversible. A possible explanation of these phenomena is that entry of the merozoite may be inhibited by breakdown of the host cell phospholipid asymmetry, with the appearance of aminophospholipids at the outer cell surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Backman, L. (1986). Shape control in the human red cell. Journal of Cell Science 80, 281–8.CrossRefGoogle ScholarPubMed
Bitbol, M., Fellmann, P., Zachowski, A. & Devaux, P. F. (1987). Ion regulation of phosphatidylserine and phosphatidylethanolarnine outside-inside translocation in human erythrocytes. Biochimica et Biophysica Acta 904, 268–82.CrossRefGoogle ScholarPubMed
Connor, J., Bucana, C., Fidler, I. J. & Schroit, A. J. (1989). Differentiation-dependent exposure of phosphatidylserine in mammalian plasma membranes: Quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proceedings of the National Academy of Sciences, USA 86, 3184–8.CrossRefGoogle ScholarPubMed
Connor, J., Gillum, K. & Schroit, A. J. (1990). Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochimica et Biophysica Acta 1025, 82–6.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Rangachari, K., Wilson, R. J. M. & Gratzer, W. B. (1983). A cytoplasmic requirement of red cells for invasion by malarial parasites. Molecular and Biochemical Parasitology 9, 145–60.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Ling, I. T., Rangachari, K., Bates, P. A. & Wilson, R. J. M. (1984). A simple method for isolating viable mature parasites of Plasmodium falciparum from cultures. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 622–4.CrossRefGoogle ScholarPubMed
Flatman, P. W. & Lew, V. L. (1980). Magnesium buffering in intact human red blood cells measured using the ionophore A23187. Journal of Physiology 305, 1330.CrossRefGoogle ScholarPubMed
Friedman, M. J. (1983). Control of malaria virulence by α1-acid glycoprotein (orosomucoid), an acute-phase inflammatory reactant. Proceedings of the National Academy of Sciences, USA 80, 5421–4.CrossRefGoogle Scholar
Friedman, M. J., Blankenberg, T., Sensabaugh, G. & Tenforde, T. S. (1984). Recognition and invasion of human erythrocytes by malarial parasites: contribution of sialoglycoproteins to attachment and host specificity. Journal of Cell Biology 98, 1672–7.CrossRefGoogle ScholarPubMed
Froman, G., Acevedo, F. & Hjertén, S. (1980). A molecular sieving method of preparing erythrocyte membranes. Preparative Biochemistry 10, 5967.CrossRefGoogle ScholarPubMed
Gupta, C. M. & Mishra, G. C. (1981). Transbilayer phospholipid asymmetry in Plasmodium knowlesi-infected host cell membrane. Science 212, 1047–9.CrossRefGoogle ScholarPubMed
Henseleit, U., Plasa, G. & Haest, C. (1990). Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochimica et Biophysica Acta 1029, 127–35.CrossRefGoogle ScholarPubMed
Joshi, P., Dutta, G. & Gupta, C. M. (1987). An intracellular simian malaria parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host cell membrane. The Biochemical Journal 246, 103–8.CrossRefGoogle Scholar
Joshi, P. & Gupta, C. M. (1988). Abnormal membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. British Journal of Haematology 68, 255–9.CrossRefGoogle ScholarPubMed
Kaibuchi, K., Takai, Y. & Nishizuka, Y. (1981) Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase. Journal of biological Chemistry 256, 7146–9.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1979). Cleavage of structural proteins during the assembly of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle Scholar
Lieber, M. L. & Steck, T. L. (1982). A description of the holes in human erythrocyte membrane ghosts. Journal of Biological Chemistry 257, 11651–9.CrossRefGoogle ScholarPubMed
Lorand, L., Weismann, L. B., Epel, D. L., & Bruner-Lorand, J. (1976). Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins. Proceedings of the National Academy of Sciences, USA 73, 4479–81.CrossRefGoogle ScholarPubMed
Maguire, P. A., Prudhomme, J. & Sherman, I. W. (1991). Alterations in erythrocyte membrane phospholipid organization due to intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology 102, 179–86.CrossRefGoogle ScholarPubMed
Maksymiw, R., Sui, S-F., Gaub, H. & Sackmann, E. (1987). Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. Biochemistry 26, 2983–90.CrossRefGoogle ScholarPubMed
Moll, G. N., Vial, H. J., Bevers, E. M., Ancolin, M. L., Roelofsen, B., Comfurius, P., Slotboom, A. J., Zwaal, R. F. A., Op Den Kamp, J. A. F. & Van Deenen, L. L. M. (1990). Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes. Biochemistry and Cell Biology 68, 579–85.CrossRefGoogle ScholarPubMed
Murakami, T., Hatanaka, M. & Murachi, T. (1981). The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). Journal of Biochemistry 90, 1809–16.CrossRefGoogle ScholarPubMed
Olson, J. A. & Kilejian, A. (1982). Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malaria parasite Plasmodium falciparum. Journal of Cell Biology 95, 757–62.CrossRefGoogle Scholar
Rangachari, K., Dluzewski, A. B., Wilson, R. J. M. & Gratzer, W. B. (1986). Control of malarial invasion by phosphorylation of the host cell membrane cytoskeleton. Nature, London 324, 364–5.CrossRefGoogle ScholarPubMed
Schwartz, R. W., Olson, J. A., Raventos-Suarez, C., Yee, M., Heath, R. H., Lubin, B. & Nagel, R. L.(1987). Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood 69, 401–7.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Valdez, E. (1989). In vitro cytoadherence of Plasmodium falciparum-infected erythrocytes to melanoma cells: factors affecting adhesion. Parasitology 98, 359–69.CrossRefGoogle ScholarPubMed
Thomas, P. G. & Verkleij, A. J. (1990). The dissimilar interactions of the calcium antagonist flunarizine with different phospholipid classes and molecular species: a differential scanning calorimetry study. Biochimica et Biophysica Acta 1030, 211–22.CrossRefGoogle ScholarPubMed
Thomas, P. G., Zimmermann, A. G. & Verkleij, A. J. (1988). Prevention of calcium-induced membrane structural alterations in erythrocyte membranes by flunarizine. Biochimica et Biophysica Acta 946, 439–44.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Van Der Schaft, P. H., Beaumelle, B., Vial, H., Roelsofsen, B., Op Den Kamp, J. A. F. & Van Deenen, L. L. M. (1987). Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochimica et Biophysica Acta 901, 114.CrossRefGoogle ScholarPubMed
Williamson, P., Alparin, L., Bateman, J., Choe, H-R. & Schlegel, B. A. (1985). Phospholipid asymmetry in human erythrocyte ghosts. Journal of Cellular Physiology 123, 209–14.CrossRefGoogle ScholarPubMed
Zachowski, A., Fellmann, P., Hervé, P. & Devaux, P. F. (1987). Labelling of human erythrocyte membrane protein by photoactivable radioiodinated phosphatidylcholine and phosphatidylserine. A search for the aminophospholipid translocase. FEBS Letters 223, 315–20.CrossRefGoogle Scholar