Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T11:17:09.989Z Has data issue: false hasContentIssue false

Eimeria species which infect the chicken contain virus-like RNA molecules

Published online by Cambridge University Press:  06 April 2009

J. Ellis
Affiliation:
Department of Parasitology, AFRC Institute for Animal Health, Houghton Laboratory, Houghton, Huntingdon, Cambs PE17 2DA
H. Revets
Affiliation:
Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, 1640 Sint-Genesius-Rode, Brussels, Belgium

Extract

There is increasing support for the presence of viruses and virus-like particles inside protozoan cells. This study describes viral-like RNA molecules that have been detected in two species of Eimeria that infect the chicken. The RNA molecule identified in E. maxima has been characterized: subcellular fractionation studies have shown that the RNA is present in the cytoplasm, probably as an abundant ribonucleoprotein that is insensitive to RNAse A treatment. Electron microscopy has demonstrated that this RNA molecule is double stranded. In addition, all E. maxima strains examined so far contain this RNA molecule.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, H. D. (1978). Studies on the excystation of different species of Eimeria in vitro. Zeitschrift für Parasitenkunde 56, 115–21.Google Scholar
Chapman, H. D. (1980). Studies on the sensitivity of field isolates of Eimeria maxima to combinations of anticoccidial drugs. Avian Pathology 9, 6776.CrossRefGoogle ScholarPubMed
Chapman, H. D. (1985). Drug resistance in Coccidia: recent research. In Research in Avian Coccidiosis, Proceedings of the Georgia Coccidiosis Conference, University of Georgia (ed. McDougald, L. R., Joyner, L. & Long, P. L.), pp. 330347.Google Scholar
Chirgwin, J. M., Przybyla, A. E., Macdonald, R. J. & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–9.CrossRefGoogle ScholarPubMed
Chu, G., Vollrath, D. & Davis, R. W. (1986). Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234, 1582–5.CrossRefGoogle ScholarPubMed
Clarke, L. E., Messer, L. I., Greenwood, N. M. & Wisher, M. H. (1987). Isolation of μamp3 genomic recombinants coding for antigens of Eimeria tenella. Molecular and Biochemical Parasitology 22, 7987.Google Scholar
Dejonckheere, J. F. & Gordts, B. (1987). Occurrence and transfection of a Giarda virus. Molecular and Biochemical Parasitology 23, 85–9.Google Scholar
Furfine, E. S., White, T. C., Wang, A. L. & Wang, C. C. (1989). A single-stranded RNA copy of the Giardia lamblia virus double-stranded RNA genome is present in the infected Giardia lamblia. Nucleic Acids Research 17, 7453–67.CrossRefGoogle ScholarPubMed
Guzman, P. & Ecker, J. R. (1988). Development of large DNA methods for plants: Molecular cloning of large segments of Arabidopsis and carrot DNA into yeast. Nucleic Acids Research 16, 11091–105.CrossRefGoogle ScholarPubMed
Jeffers, T. K. (1974). Immunization against Eimeria tenella using an attenuated strain. 15th World's Poultry Congress, New Orleans, pp. 105–7.Google Scholar
Jenkins, M. C., Lillehoj, H. S. & Dame, J. B. (1988). Eimeria acervulina: DNA cloning and characterisation of recombinant sporozoite and merozoite antigens. Experimental Parasitology 66, 97107.Google Scholar
Joyner, L. P. & Norton, C. C. (1978). The acitivty of methyl benzoquate and clopidol against E. maxima: synergy and drug resistance. Parasitology 76, 367–77.Google Scholar
Langridge, R. & Gomatos, R. J. (1963). The structure of Rheovirus RNA and transfer RNA have similar three-dimensional structures which differ from DNA. Science 141, 694–8.Google Scholar
Long, P. L. (1982). The Biology of the Coccidia, Baltimore: University Park Press.Google Scholar
Long, P. L., Joyner, L. P., Millard, B. J. & Norton, C. C. (1976). A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Veterinaria 6, 201–12.Google Scholar
Olson, M. V., Longhney, K. & Hall, B. D. (1979). Identification of the yeast DNA sequences that correspond to specific tyrosine-inserting nonsense suppressor loci. Journal of Molecular Biology 132, 387410.CrossRefGoogle ScholarPubMed
Revets, H., Dekegel, D., Deleersnijder, W., Dejonckheese, J., Peters, J., Leysen, E. & Hamers, R. (1989). Identification of virus-like particles in Eimeria stiedae. Molecular and Biochemical Parasitology 36, 209–16.Google Scholar
Tarr, P. I., Aline, J. R. F., Smiley, B. L., Scholler, J., Keithly, J. & Stuart, K. (1988). LR1: A candidate RNA virus of Leishmania. Proceedings of the National Academy of Sciences, USA 85, 9572–85.CrossRefGoogle ScholarPubMed
Wang, A. L. & Wang, C. C. (1986 a). The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proceedings of the National Academy of Sciences, USA 83, 7956–60.Google Scholar
Wang, A. L. & Wang, C. C. (1986 b). Discovery of a specific double-stranded RNA virus in Giardia lamblia. Molecular and Biochemical Parasitology 21, 269–70.CrossRefGoogle ScholarPubMed
Wang, A. L., Wang, C. C. & Alderete, J. F. (1987). Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus. Journal of Experimental Medicine 166, 142–50.Google Scholar
White, T. C. & Wang, C. C. (1990). RNA dependent RNA polymerase activity associated with the double-stranded RNA virus of Giardia lamblia. Nucleic Acids Research 18, 553–9.Google Scholar
Wisher, M. (1986). Identification of the sporozoite antigens of Eimeria tenella. Molecular and Biochemical Parasitology 21, 715.CrossRefGoogle ScholarPubMed
Wisher, M. H. & Rose, M. E. (1984). The large-scale preparation of purified sporozoites of Eimeria spp. by metrizamide density-gradient centrifugation. Parasitology 88, 515–19.CrossRefGoogle ScholarPubMed