Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:26:26.819Z Has data issue: false hasContentIssue false

ELISAs based on recombinant antigens for sero-epidemiological studies on Toxoplasma gondii infections in cats

Published online by Cambridge University Press:  06 April 2009

A. M. Tenter
Affiliation:
Institut für Parasitologie, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
C. Vietmeyer
Affiliation:
Institut für Parasitologie, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
A. M. Johnson
Affiliation:
Department of Microbiology, School of Biological and Biomedical Sciences, University of Technology Sydney, Westbourne Street, Gore Hill, N.S.W. 2065, Australia.
K. Janitschke
Affiliation:
Robert Koch-Institut des Bundesgesundheitsamtes, Fachgebiet Klinische Parasitologie, Nordufer 20, 13353 Berlin, Germany.
M. Rommel
Affiliation:
Institut für Parasitologie, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
W. Lehmacher
Affiliation:
Institut für Biometrie und Epidemiologie, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.

Summary

Two recombinant Toxoplasma gondii polypeptides, H4 and H11, were tested as diagnostic antigens in enzyme-linked immunosorbent assays (ELISAs). The results obtained by ELISAs based on single H4 (H4-ELISA), on single H11 (H11-ELISA) and on a mixture of H4 and H11 (H4/H11-ELISA) were compared with results obtained by an ELISA based on traditional ELISA antigen (TEA-ELISA), an indirect fluorescent antibody test (IFAT), the Sabin-Feldman dye test (SFDT) and a direct agglutination test (DAT). A total of 306 cats from a suburban cat population were tested of which about 45% showed serological evidence of T. gondii infection. Infection rates varied from about 32% for cats kept indoors to about 55% for stray cats. Specificities > 99% were observed for all ELISAs based on the recombinant antigens (H4-ELISA, H11-ELISA and H4/H11-ELISA). The H4/H11-ELISA also reached a sensitivity of 95% which compared very favourably with those observed for the TEA-ELISA (98%) and for the IFAT (94%). Negative and positive predictive values for the H4/H11-ELISA were 96 and < 99%, respectively. Antibody titres measured by the H4/H11-ELISA also correlated well with those measured by the SFDT and the DAT. Hence, the H4/H11-ELISA appears to be a very suitable test for sero-epidemiological studies on T. gondii infections in cats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achbarou, A., Mercereau-Puijalon, O., Sadak, A., Fortier, B., Leriche, M. A., Camus, D. & Dubremetz, J. F. (1991). Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii. Parasitology 103, 321–9.CrossRefGoogle ScholarPubMed
Barker, D. J. P. & Rose, G. (1990). Screening. In Epidemiology in Medical Practice, 4th Edn, Chapter 8, pp. 125134. Edinburgh: Churchill Livingstone.Google Scholar
Bundesgesundheitsamt (1989). Verfahrensrichtlinien für die Laboratoriumsdiagnostik von parasitären Infektionen beim Menschen. Sabin-Feldman-Test (SFT) zum Nachweis von Antikörpern gegen Toxoplasma gondii (Routinemethode). Bundesgesundheitsblatt 32, 553–5.Google Scholar
Dubey, J. P. & Beattie, C. P. (1988). Toxoplasmosis of Animals and Man. Boca Raton, Florida: CRC Press Inc.Google Scholar
Hedman, K., Lappalainen, M., Seppäiä, I. & Mäkelä, O. (1989). Recent primary Toxoplasma infection indicated by a low avidity of specific IgG. Journal of Infectious Diseases 159, 736–40.Google Scholar
Jackson, M. H. & Hutchison, W. M. (1989). The prevalence and source of Toxoplasma infection in the environment. Advances in Parasitology 28, 55105.CrossRefGoogle ScholarPubMed
Johnson, A. M. & Illana, S. (1991). Cloning of Toxoplasma gondii gene fragments encoding diagnostic antigens. Gene 99, 127–32.Google Scholar
Johnson, A. M., Roberts, H. & Tenter, A. M. (1992). Evaluation of a recombinant antigen ELISA for the diagnosis of acute toxoplasmosis and comparison with traditional antigen ELISAs. Journal of Medical Microbiology 37, 404–9.CrossRefGoogle ScholarPubMed
Joynson, D. H. M., Payne, R. A. & Rawal, B. K. (1990). Potential role of IgG avidity for diagnosing toxoplasmosis. Journal of Clinical Pathology 43, 1032–3.Google Scholar
Luft, B. J. & Remington, J. S. (1988). Toxoplasmic encephalitis. Journal of Infectious Diseases 157, 16.CrossRefGoogle ScholarPubMed
Mevelec, M. N., Chardès, T., Mercereau-Puijalon, O., Bourguin, I., Achbarou, A., Dubremetz, J. F. & Bout, D. (1992). Molecular cloning of GRA4, a Toxoplasma gondii dense granule protein, recognized by mucosal IgA antibodies. Molecular and Biochemical Parasitology 56, 227–38.CrossRefGoogle ScholarPubMed
Omata, Y., Oikawa, H., Kanda, M., Mikazuki, K., Nakabayashi, T. & Suzuki, N. (1990). Experimental feline toxoplasmosis: humoral immune responses of cats inoculated orally with Toxoplasma gondii cysts and oocysts. Japanese Journal of Veterinary Sciences 52, 865–7.Google ScholarPubMed
Parker, S. J., Smith, F. M. & Johnson, A. M. (1991). Murine immune responses to recombinant Toxoplasma gondii antigens. Journal of Parasitology 77, 402–9.Google Scholar
Parmley, S. F., Sgarlato, G. D., Mark, J., Prince, J. B. & Remington, J. S. (1992). Expression, characterization, and serologic reactivity of recombinant surface antigen P22 of Toxoplasma gondii. Journal of Clinical Microbiology 30, 1127–33.Google Scholar
Remington, J. S. & Desmonts, G. (1983). Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant, 2nd Edn (ed. Remington, J. S. & Klein, J. O.), pp. 143263. Philadelphia: W. D. Saunders Co.Google Scholar
Srivastava, I. K., Takacs, B., Caspers, P., Certa, U., McGregor, I. A., Scaife, J. & Perrin, L. H. (1989). Recombinant polypeptides for serology of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 317–21.CrossRefGoogle ScholarPubMed
Suzuki, Y., Thulliez, P., Desmonts, G. & Remington, J. S. (1988). Antigen(s) responsible for immunoglobulin G responses specific for the acute stage of Toxoplasma infection in humans. Journal of Clinical Microbiology 26, 901–5.Google Scholar
Suzuki, Y., Thulliez, P. & Remington, J. S. (1990). Use of acute-stage-specific antigens of Toxoplasma gondii for serodiagnosis of acute toxoplasmosis. Journal of Clinical Microbiology 28, 1734–8.CrossRefGoogle ScholarPubMed
Tenter, A. M. (1987). Comparison of enzyme-linked immunosorbent assay and indirect fluorescent antibody test for the detection of IgG antibodies to Sarcocystis muris. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, Series A 267, 259–71.Google ScholarPubMed
Tenter, A. M. & Johnson, A. M. (1991). Recognition of recombinant Toxoplasma gondii antigens by human sera in an ELISA. Parasitology Research 77, 197203.CrossRefGoogle Scholar
Tenter, A. M., Vietmeyer, C. & Johnson, A. M. (1992). Development of ELISAs based on recombinant antigens for the detection of Toxoplasma gondii-specific antibodies in sheep and cats. Veterinary Parasitology 43, 189201.Google Scholar
Unbehauen, I. (1991). Untersuchungen über das Vorkommen von Darmparasiten bei Katzen im Raum Lübeck. Vet. Med. thesis, Tierärztliche Hochschule Hannover.Google Scholar
Van Gelder, P., Bosman, F., De Meuter, F., Van Heuverswyn, H. & Hérion, P. (1993). Serodiagnosis of toxoplasmosis by using a recombinant form of the 54-kilodalton rhoptry antigen expressed in Escherichia coli. Journal of Clinical Microbiology 31, 915.CrossRefGoogle ScholarPubMed
Ware, P. L. & Kasper, L. H. (1987). Strain-specific antigens of Toxoplasma gondii. Infection and Immunity 55, 778–83.Google Scholar
Weiss, L. M., Udem, S. A., Tanowitz, H. & Wittner, M. (1988). Western blot analysis of the antibody response of patients with AIDS and toxoplasma encephalitis: antigenic diversity among Toxoplasma strains. Journal of Infectious Diseases 157, 713.Google Scholar