Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:27:14.320Z Has data issue: false hasContentIssue false

Endogenous superoxide dismutase activity in two Babesia species

Published online by Cambridge University Press:  06 April 2009

P. Becuwe
Affiliation:
INSERM U42, B.P.39, 59651 Villeneuve d'Ascq cedex, France
C. Slomianny
Affiliation:
INSERM U42, B.P.39, 59651 Villeneuve d'Ascq cedex, France
A. Valentin
Affiliation:
Laboratoire de Biologie Cellulaire, URA CNRS 290, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
J. Schrevel
Affiliation:
Laboratoire de Biologie Cellulaire, URA CNRS 290, 40 Avenue du Recteur Pineau, 86022 Poitiers, France Laboratoire de Biologie Parasitaire et Chimiothérapie, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
D. Camus
Affiliation:
Laboratoire de Biologie Cellulaire, URA CNRS 290, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
D. Dive
Affiliation:
Laboratoire de Biologie Cellulaire, URA CNRS 290, 40 Avenue du Recteur Pineau, 86022 Poitiers, France

Summary

Babesia hylomysci and B. divergens were studied for superoxide dismutase (SOD) activity by enzyme assay and isoelectric focusing (IEF). In the two Babesia species, parasite-associated SOD is cyanide-insensitive and inhibited by H2 O2, indicating that iron is the cofactor metal. Measurements of SOD activity from purified parasites show that the SOD activity detected in Babesia is, for the main part, due to an endogenous enzyme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barra, D., Schinina, M. E., Bossa, F., Puget, K., Durosay, P., Guissani, A. & Michelson, A. M. (1990). A tetrameric iron superoxide dismutase from the eucaryote Tetrahymena pyriformis. Journal of Biological Chemistry 265, 17680–7.CrossRefGoogle ScholarPubMed
Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–87.CrossRefGoogle Scholar
Bessis, M. (1972). Cellules du Sang Normal et Pathologique. Paris: Masson.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Clark, I. A., Chaudhri, G. & Cowden, W. B. (1989). Some roles of free radicals in malaria. Free Radical Biology and Medicine 6, 315–21.CrossRefGoogle ScholarPubMed
Fairfield, A., Abosch, A., Ranz, A., Eaton, J. W. & Meshnick, S. T. (1988). Oxidant defense enzymes of Plasmodium falciparum. Molecular and Biochemical Parasitology 30, 7782.CrossRefGoogle ScholarPubMed
Fairfield, A., Meshnick, S. R. & Eaton, J. W. (1983). Malaria parasites adopt host cell superoxide dismutase. Science 221, 764–6.CrossRefGoogle ScholarPubMed
Fridovich, I. (1975). Superoxide dismutases. Annual Review of Biochemistry 44, 147–59.CrossRefGoogle ScholarPubMed
Giulivi, C., Turrens, J. F. & Boveris, A. (1988). Chemiluminescence enhancement by trypanocidal drugs and by inhibitors of antioxidant enzymes in Trypanosoma cruzi. Molecular and Biochemical Parasitology 30, 243–52.CrossRefGoogle ScholarPubMed
Gorenflot, A., Grasseur, P., Precigout, E., L'hostis, M., Marchand, A. & Schrevel, J. (1991). Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitological Research 77, 312.CrossRefGoogle ScholarPubMed
Keele, B. B. Jr, Mccord, J. M. & Fridovich, I. (1970). Superoxide dismutase from Escherichia coli B: a new manganese-containing enzyme. Journal of Biological Chemistry 248, 4905–8.Google Scholar
Kitchener, K., Meshnick, S. T., Fairfield, A. S. & Wang, C. C. (1984). An iron-containing superoxide dismutase in Tritrichomonas foetus. Molecular and Biochemical Parasitology 12, 95–9.CrossRefGoogle ScholarPubMed
Le trant, N., Meshnick, S. T., Kitchener, K. R., Eaton, J. W. & Cerami, A. (1983). Iron-containing superoxide dismutase from Crithidia fasciculata: purification, characterization, and similarity to Leishmanial and trypanosomal enzymes. Journal of Biological Chemistry 258, 125–30.CrossRefGoogle ScholarPubMed
Lumsden, J. & Hall, D. O. (1974). Soluble and membrane-bound superoxide dismutase in a bluegreen alga (Spirulina) and Spinach. Biochemical and Biophysical Research Communications 58, 3541.CrossRefGoogle Scholar
Mccord, J. M. & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244, 6049–55.CrossRefGoogle ScholarPubMed
Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47, 469–74.CrossRefGoogle Scholar
Meshnick, S. T. & Eaton, J. W. (1981). Leishmanial superoxide dismutase: a possible target for chemotherapy. Biochemical and Biophysical Research Communications 102, 970–6.CrossRefGoogle ScholarPubMed
Meshnick, S. R., Trang, N. L., Kitchener, E., Cerami, A. & Eaton, J. (1983). Iron containing superoxide dismutase in trypanosomatids. In Oxyradicals and their Scavenger Systems: Molecular Aspects vol. 2 (ed. Choen, G. & Greenwald, R. A.), pp. 348351. New York: Elsevier-North Holland.Google Scholar
Michalski, W. P. & Prowse, S. J. (1991). Superoxide dismutases in Eimeria tenella. Molecular and Biochemical Parasitology 47, 189–96.CrossRefGoogle ScholarPubMed
Pernin, P., Cariou, M. L. & Jacquier, A. (1985). Biochemical identification and phylogenic relationships in free-living amoebas of the genus Naegleria. Journal of Protozoology 32, 592603.CrossRefGoogle Scholar
Ranz, A. & Meshnick, S. R. (1989). Plasmodium falciparum: Inhibitor sensitivity of the endogenous superoxide dismutase. Experimental Parasitology 69, 125–8.CrossRefGoogle ScholarPubMed
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17, 208–12.CrossRefGoogle ScholarPubMed
Sibley, D. L., Lawson, R. & Weidner, E. (1986). Superoxide dismutase and catalase in Toxoplasma gondii. Molecular and Biochemical Parasitology 19, 83–7.CrossRefGoogle ScholarPubMed
Tainer, J. A., Getzoff, E. D., Richardson, J. S. & Richardson, D. C. (1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature, London 306, 284–6.CrossRefGoogle ScholarPubMed
Weisiger, R. A. & Fridovich, I. (1973). Mitochondrial superoxide dismutase: Site of synthesis and intramitochondrial localization. Journal of Biological Chemistry 248, 4793–6.CrossRefGoogle ScholarPubMed
Winterbourn, C. C., Hawkins, R. E., Brian, M. & Carewell, R. W. (1975). The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine 85, 337–41.Google ScholarPubMed
Yost, F. J. & Fridovich, I. (1973). An iron-containing superoxide dismutase from Escherichia coli. Journal of Biological Chemistry 248, 4905–8.CrossRefGoogle ScholarPubMed