Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:01:10.590Z Has data issue: false hasContentIssue false

Estimation of the sequestered parasite load in severe malaria patients using both host and parasite markers

Published online by Cambridge University Press:  28 June 2005

L. B. OCHOLA
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Research Coast, P.O. Box 230, Kilifi, Kenya
K. MARSH
Affiliation:
Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Research Coast, P.O. Box 230, Kilifi, Kenya Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
B. LOWE
Affiliation:
Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Research Coast, P.O. Box 230, Kilifi, Kenya
S. GAL
Affiliation:
Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
G. PLUSCHKE
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland
T. SMITH
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland

Abstract

The virulence of the malaria parasite Plasmodium falciparum is due, in part, to its ability to cytoadhere in deep vascular beds. Our inability to quantify the load of sequestered parasites hampers our understanding of the pathophysiological mechanisms involved in disease progression and complicates diagnosis. In this study we evaluate potential biochemical markers of sequestered load by comparing them with estimates of the sequestered load from a statistical model fitted to longitudinal patterns of peripheral parasite densities in a series of 22 patients with severe Plasmodium falciparum malaria. The markers comprised the host factors: haematocrit, circulating host DNA, sTNF-R75 and parasite derived products HRP2, pLDH, pigments and circulating parasite DNA. We investigated the suitability of these markers in determining sequestered loads in patients on quinine treatment. Observed peripheral parasitaemia, plasma levels of sTNF-R75 and circulating parasite DNA were most strongly correlated with estimates of sequestered loads on admission. However the dynamics of both sTNF-R75 and circulating parasite DNA during follow-up were very different from those of the estimated sequestered mass. These analyses suggest that none of the markers gave reliable estimates of the current sequestered load, though they may reflect the history of infection. Longitudinal analyses are needed that allow for the clearance rates of the marker molecules and for variations between hosts in the history of parasitaemia.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. ( 1988). Human cerebral malaria. American Journal of Tropical Medicine and Hygiene 39, 310.CrossRefGoogle Scholar
Chen, Q., Schlichtherle, M. and Wahlgren, M. ( 2000). Molecular aspects of severe malaria. Clinical Microbiology Reviews 13, 439450.CrossRefGoogle Scholar
Davis, T. M., Krishna, S., Looareesuwan, S., Supanaranond, W., Pukrittayakamee, S., Attatamsoonthorn, K. and White, N. J. ( 1990). Erythrocyte sequestration and anemia in severe falciparum malaria. Analysis of acute changes in venous hematocrit using a simple mathematical model. Journal of Clinical Investigation 86, 793800.Google Scholar
Day, N. P., Pham, T. D., Phan, T. L., Dinh, X. S., Pham, P. L., Ly, V. C., Tran, T. H., Nguyen, T. H., Bethell, D. B., Nguyan, H. P., Tran, T. H. and White, N. J. ( 1996). Clearance kinetics of parasites and pigment-containing leukocytes in severe malaria. Blood 88, 46944700.Google Scholar
Desakorn, V., Dondorp, A. M., Silamut, K., Pongtavornpinyo, W., Sahassananda, D., Chotivanich, K., Punnee, P., Smithyman, A. M., Day, N. P. J. and White, N. J. ( 2005). Stage dependent production and release of Histidine Rich Protein 2 by Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene (in the Press).CrossRefGoogle Scholar
Desakorn, V., Silamut, K., Angus, B., Sahassananda, D., Chotivanich, K., Suntharasamai, P., Simpson, J. and White, N. J. ( 1997). Semi-quantitative measurement of Plasmodium falciparum antigen PfHRP2 in blood and plasma. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 479483.CrossRefGoogle Scholar
Dondorp, A., Desakorn, V., Pongtavornpinyo, W., Sahassananda, D., Silamut, K., Chotivanich, K., Newton, P., Pitisuttithum, P., Smithyman, A. M., White, N. and Day, N. ( 2005). Estimation of the Total Parasite Biomass in Acute Falciparum Malaria from Plasma PfHRP2. Public Library of Science Medicine (in the Press).CrossRefGoogle Scholar
Gal, S., Fidler, C., Turner, S., Lo, Y. M., Roberts, D. J. and Wainscoat, J. S. ( 2001). Detection of Plasmodium falciparum DNA in plasma. Annals of the New York Academy of Sciences 945, 234238.CrossRefGoogle Scholar
Gravenor, M. B., Lloyd, A. L., Kremsner, P. G., Missinou, M. A., English, M., Marsh, K. and Kwiatkowski, D. ( 2002). A model for estimating total parasite load in falciparum malaria patients. Journal of Theoretical Biology 217, 137148.CrossRefGoogle Scholar
Gravenor, M. B., Van Hensbroek, M. B. and Kwiatkowski, D. ( 1998). Estimating sequestered parasite population dynamics in cerebral malaria. Proceedings of the National Academy of Sciences, USA 95, 76207624.CrossRefGoogle Scholar
Howard, R. J., Uni, S., Aikawa, M., Aley, S. B., Leech, J. H., Lew, A. M., Wellems, T. E., Rener, J. and Taylor, D. W. ( 1986). Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology 103, 12691277.CrossRefGoogle Scholar
Hurt, N., Thein, M., Smith, T., Bordmann, G., Gallati, H., Drees, N., Tanner, M. and Weiss, N. ( 1995). Immunological markers of childhood fevers in an area of intense and perennial malaria transmission. Clinical and Experimental Immunology 100, 5966.CrossRefGoogle Scholar
Kilian, A. H., Kabagambe, G., Byamukama, W., Langi, P., Weis, P. and Von sonnenburg, F. ( 1999). Application of the ParaSight-F dipstick test for malaria diagnosis in a district control program. Acta Tropica 72, 281293.CrossRefGoogle Scholar
Lee, M. A., Tan, C. H., Aw, L. T., Tang, C. S., Singh, M., Lee, S. H., Chia, H. P. and Yap, E. P. ( 2002). Real-time fluorescence-based PCR for detection of malaria parasites. Journal of Clinical Microbiology 40, 43434345.CrossRefGoogle Scholar
Leeuwenberg, J. F., Dentener, M. A. and Buurman, W. A. ( 1994). Lipopolysaccharide LPS-mediated soluble TNF receptor release and TNF receptor expression by monocytes. Role of CD14, LPS binding protein, and bactericidal/permeability-increasing protein. Journal of Immunology 152, 50705076.Google Scholar
Lyke, K. E., Diallo, D. A., Dicko, A., Kone, A., Coulibaly, D., Guindo, A., Cissoko, Y., Sangare, L., Coulibaly, S., Dakouo, B., Taylor, T. E., Doumbo, O. K. and Plowe, C. V. ( 2003). Association of intraleukocytic Plasmodium falciparum malaria pigment with disease severity, clinical manifestations, and prognosis in severe malaria. American Journal of Tropical Medicine and Hygiene 69, 253259.Google Scholar
Makler, M. T. and Hinrichs, D. J. ( 1993). Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. American Journal of Tropical Medicine and Hygiene 48, 205210.CrossRefGoogle Scholar
Marsh, K., Forster, D., Waruiru, C., Mwangi, I., Winstanley, M., Marsh, V., Newton, C., Winstanley, P., Warn, P., Peshu, N., Pasrol, G. and Snow, R. ( 1995). Indicators of life-threatening malaria in African children. New England Journal of Medicine 332, 13991404.CrossRefGoogle Scholar
Mayxay, M., Pukrittayakamee, S., Chotivanich, K., Looareesuwan, S. and White, N. J. ( 2001). Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 179182.CrossRefGoogle Scholar
McGuire, W., D'Alessandro, U., Stephens, S., Olaleye, B. O., Langerock, P., Greenwood, B. M. and Kwiatkowski, D. ( 1998). Levels of tumour necrosis factor and soluble TNF receptors during malaria fever episodes in the community. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 5053.CrossRefGoogle Scholar
Murphy, S., English, M., Omar, A., Crawley, J., Waruiru, C., Mwangi, I., Amukoye, E., Peshu, N., Newton, C. R., Winstanley, P. A. and Marsh, K. ( 1995). The management of severe malaria in children: a review. East African Medical Journal 72, 536539.Google Scholar
Nguyen, P. H., Day, N., Pram, T. D., Ferguson, D. J. and White, N. J. ( 1995). Intraleucocytic malaria pigment and prognosis in severe malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 89, 200204.Google Scholar
Parra, M. E., Evans, C. B. and Taylor, D. W. ( 1991). Identification of Plasmodium falciparum histidine-rich protein 2 in the plasma of humans with malaria. Journal of Clinical Microbiology 29, 16291634.Google Scholar
Perandin, F., Manca, N., Calderaro, A., Piccolo, G., Galati, L., Ricci, L., Medici, M. C., Arcangeletti, M. C., Snounou, G., Dettori, G. and Chezzi, C. ( 2004). Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. Journal of Clinical Microbiology 42, 12141219.CrossRefGoogle Scholar
Piper, R., Lebras, J., Wentworth, L., Hunt-cooke, A., Houze, S., Chiodini, P. and Makler, M. ( 1999). Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH). American Journal of Tropical Medicine and Hygiene 60, 109118.CrossRefGoogle Scholar
Richardson, D. C., Ciach, M., Zhong, K. J., Crandall, I. and Kain, K. C. ( 2002). Evaluation of the Makromed dipstick assay versus PCR for diagnosis of Plasmodium falciparum malaria in returned travellers. Journal of Clinical Microbiology 40, 45284530.CrossRefGoogle Scholar
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N. ( 1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 13501354.CrossRefGoogle Scholar
Schwarzer, E., Turrini, F., Ulliers, D., Giribaldi, G., Ginsburg, H. and Arese, P. ( 1992). Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. Journal of Experimental Medicine 176, 10331041.CrossRefGoogle Scholar
Sein, K. K., Maeno, Y., Thuc, H. V., Anh, T. K. and Aikawa, M. ( 1993). Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. American Journal of Tropical Medicine and Hygiene 48, 504511.CrossRefGoogle Scholar
Sherman, I. W., Eda, S. and Winograd, E. ( 2003). Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes and Infection 5, 897909.CrossRefGoogle Scholar
Shoukri, M. M. and Pause, C. A. ( 1999). Statistical Methods for Health Sciences. 2nd Edn. CRC Press, Boca Raton, Fl, USA.
Smith, T., Dietz, K., Vounatsou, P., Mueller, I., English, M. and Marsh, K. ( 2004). Bayesian age-stage modelling of P. falciparum sequestered loads in severe malaria patients. Parasitology 129, 289299.Google Scholar
Ter Kuile, F., White, N. J., Holloway, P., Pasvol, G. and Krishna, S. ( 1993). Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Experimental Parasitology 76, 8595.Google Scholar
Vogetseder, A., Ospelt, C., Reindl, M., Schober, M. and Schmutzhard, E. ( 2004). Time course of coagulation parameters, cytokines and adhesion molecules in Plasmodium falciparum malaria. Tropical Medicine and International Health 9, 767773.CrossRefGoogle Scholar
Warrell, D. A., Molyneux, C. S. and Beales, P. F. ( 1990). Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 152.Google Scholar
White, N. J. ( 2002). The assessment of antimalarial drug efficacy. Trends in Parasitology 18, 458464.CrossRefGoogle Scholar