Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T23:29:46.836Z Has data issue: false hasContentIssue false

Evolutionary pressures in the spread and persistence of infectious agents in vertebrate populations

Published online by Cambridge University Press:  06 April 2009

R. M. Anderson
Affiliation:
Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford OX1 3PS

Summary

Infectious agents have considerable potential to regulate or constrain the population growth of vertebrate hosts in natural habitats. A broad theoretical framework provides many insights into how the biology of the parasite and the demography of the host interact to determine this impact. It may manifest itself as a steady influence over time via stable endemic infection or in a recurrent epidemic fashion, sometimes with unpredictable intervals between epidemics depending on the generation time of the pathogen (time from infection to recovery or host death), its ability to induce lasting immunity and the population growth rate of the host species. Building on these notions, the paper focuses on recent work on the population dynamics of genetically variable pathogen populations and examines the factors that determine the evolution of virulence and the maintenance of genetic diversity in both host and pathogen. Recent research extends conventional theoretical templates to include population genetic elements and the within-host dynamics of the parasite and its interaction with the vertebrate immune system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1979 a). The Persistence of Direct Life Cycle Infectious Diseases Within Populations of Hosts. In Some Mathematical Questions in Biology vol. 12, pp. 167. Providence, R I: American Mathematical Society.Google Scholar
Anderson, R. M. (1979 b). The Influence of Parasitic Infection on the Dynamics of Host Population Growth. In Population Dynamics (ed. Anderson, R. M., Turner, B. D. & Taylor, L. R.), pp. 245281. Oxford: Blackwell Scientific Publications.Google Scholar
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases: Part I. Nature 280, 361367.CrossRefGoogle ScholarPubMed
Anderson, R. M. (1981). Vertebrate Populations, Pathogens and the Immune System. In Population and Biology, vol. 1981 (ed. Keyfitz, N.), pp. 249268. Liege, Belgium: Ordina Editions.Google Scholar
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219247.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85, 411426.CrossRefGoogle ScholarPubMed
Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. D. M. (1981). Population dynamics of fox rabies in Europe. Nature 289, 765771.Google Scholar
Anderson, R. M. & May, R. M. (1984). Spatial, temporal and genetic heterogeneity in host populations and the design of immunization programmes. IMA Journal of Mathematics Applied in Medicine and Biology 1, 233266.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Trewhella, W. (1985). Population dynamics of the badger (Meles meles) and the epidemiology of Bovine Turbuculosis (Mycobacterium bovis). Philosophical Transactions of the Royal Society, Series B 310, 327381.Google ScholarPubMed
Anderson, R. M. (1994). The Croonian Lecture. Populations, infectious disease and immunity: a very nonlinear world. Philosophical Transactions of the Royal Society, London Series B 346, 457505.Google ScholarPubMed
Anderson, R. M. (1995). Reproductive Strategies of Trematodes. In Reproductive Biology of Invertebrates (ed. Adiyodi, K. G. & Adiyodi, R. G.). New York: John Wiley.Google Scholar
Anderson, R. M., May, R. M. & McLean, A. R. (1988). Possible demographic consequences of AIDS in developing countries. Nature 332, 228234 or 191–290.Google Scholar
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Human: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1996). The population biology of the interaction between HIV-1 and HIV-2: coexistence or competititve exclusion. AIDS (Submitted).CrossRefGoogle ScholarPubMed
Anderson, R. M., Whitfield, P. J. & Dobson, A. P. (1978). Experimental studies of infection dynamics: infection of the definitive host by the cercariae of Transversostrema patialense. Parasitology 77, 189200.CrossRefGoogle ScholarPubMed
Anderson, R. M., Swinton, J. & Garnett, G. P. (1995). Potential impact of low efficacy HIV-1 vaccines in populations with high rates of infection. Proceedings of the Royal Society, London Series B 261, 147151.Google Scholar
Antia, R., Nowak, M. A. & Anderson, R. M. (1996). Antigenic variation and the within-host dynamics of microparasites. Proceedings of the National Academy of Sciences. USA (in press).CrossRefGoogle Scholar
Austin, D. J. & Anderson, R. M. (1996). Immunodominance, competition and evolution in immunological responses to helminth parasite antigens. Parasitology (in press).CrossRefGoogle ScholarPubMed
Babad, H. R., Nokes, D. J., Gay, N. J., Miller, E., Morgan-Capner, P. & Anderson, R. M. (1994). Predicting the impact of measles vaccination in England and Wales: model validation and analysis of policy options. Epidemiology and Infection (in press).Google Scholar
Beck, K. (1984). Coevolution: mathematical analysis of host–parasite interactions. Journal of Mathematics in Biology 19, 6378.Google Scholar
Blower, S. M., McLean, A. R., Porco, T. C., Small, P. M., Hopewell, P. C., Sanchez, M. A. & Moss, A. R. (1995). The intrinisic transmission dynamics of tuberculosis epidemics. Nature Medicine 1, 815821.Google Scholar
Bouma, A., De Jong, M. C. M. & Kinnon, T. G. (1996). Transmission of pseudorabies virus in pig populations is independent of the size of the population. Preventative Veterinary Medicine (in press).Google Scholar
Bradley, J. E., Tuan, R. S., Shepley, K. J., Tree, T. I., Maizels, R. M., Helm, R., Gregory, W. F. & Unnash, T. R. (1993). Onchocerca volvulus: characterisation of an immunodominant antigen present in adult and larval parasites. Parasitology 77, 414424.Google ScholarPubMed
Burnet, M. & White, D. O. (1972). Natural History of Infectious Diseases. Cambridge: Cambridge University Press.Google Scholar
Carter, N. P., Anderson, R. M. & Wilson, R. A. (1982). Transmission of Schistosoma mansoni from man to snail: laboratory studies on the influence of snail and miricidial densities on transmission success. Parasitology 85, 361372.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179194.Google Scholar
De Jong, M., Diekman, O. & Hesterbeek, H. (1995). How does transmission of infection depend on population size? In Epidemic Models: their structure and relation to data. Ed. Mollison, D., pp. 8494. Cambridge: Cambridge University Press.Google Scholar
Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science 265, 10841086.Google Scholar
Fenner, F. & Ratcliffe, F. N. (1965). Myxomatosis. Cambridge: Cambridge University Press.Google Scholar
Frankland, H. M. T. (1954). The life history and bionomics of Diclidophora denticulata (Trematoda: monogenea), Parasitology 16, 313351.Google Scholar
Ginsberg, J. R., Mace, G. M. & Albon, S. (1995). Local extinction in a small and declining population: wild dogs in the Serengeti. Proceedings of the Royal Society, London, Series B 262, 221228.Google Scholar
Grant, W. N. (1994). Genetic variation in parasitic nematodes and its implications. International Journal of Parasitology 24, 821830.CrossRefGoogle ScholarPubMed
Grenfell, B. T., Bolker, B. M. & Kleczkowski, A. (1995). Seasonality and Extinction in chaotic metapopulations. Proceedings of the Royal Society London Series B 259, 97103.Google Scholar
Grenfell, B. & Dobson, A. (eds.) (1995). Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Grenfell, B. T., Kleczkowski, A., Ellner, S. P. & Bolker, B. M. (1994). Measles as a case-study in nonlinear forecasting and chaos. Philosophical Transactions of the Royal Society, Series A 348, 515530.Google Scholar
Guo, Z. G. & Johnson, A. M. (1995). Genetic characterization of Toxoplasma gondii strains by random amplified polymorphic DNA polymerase chain reaction. Parasitology 111, 127132.CrossRefGoogle ScholarPubMed
Gupta, S., Swinton, J. & Anderson, R. M. (1994). Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proceedings of the Royal Society, London Series B 256, 231238.Google ScholarPubMed
Gupta, S., Maiden, M. C. J., Feavers, I. M., Nee, S., May, R. M. & Anderson, R. M. (1996). The maintenance of strain structure in population of recombining infectious agents. Nature Medicine (in press).CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1949). Disease and evolution. La Ricerca Scientifica 19 (suppl.), 6876.Google Scholar
Haydon, D., Woolhouse, M. E. J. & Kitching, R. P. (1996). An analysis of Foot-and-Mouth Disease Epidemics in Europe. Institute of Mathematics and its Application. Journal of Mathematics Applied in Medicine and Biology (in press).Google Scholar
Henneman, W. W. (1983). Relationship among body mass, metabolic rate and the intrinsic rate of natural increase in mammals. Oecologia, 56, 104108.CrossRefGoogle Scholar
Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 14421445.CrossRefGoogle ScholarPubMed
Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J. & Greenwood, B. M. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595600.Google Scholar
Jacquez, J. A., Simon, C. P. & Koopman, J. S. (1995). Core Groups and the RO's for subgroups in heterogeneous SIS and SI models. In Epidemiciology models: their structure and relation to data. Ed. Mollison, D., pp. 279301. Cambridge: Cambridge University Press.Google Scholar
Kat, P. W., Alexander, J. S., Smith, J. S. & Munson, L. (1995). Rabies and African wild dogs in Kenya. Proceedings of the Royal Society, London Series B 262, 229233.Google ScholarPubMed
Kelso, A. (1995). Th1 and Th2 subsets: paradigms lost? Immunology Today 16, 374379.CrossRefGoogle ScholarPubMed
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective-stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
Klein, J., Takahata, N. & Ayala, F. J. (1993). MHC polymorphism and human origins. Scientific American 269, 7883.Google Scholar
Maizels, R. M., Bundy, D. A. P., Selkirk, M., Smith, D. & Anderson, R. M. (1993). Immunological modulation and evasion by helminth parasites in human populations. Nature 365, 686805.CrossRefGoogle ScholarPubMed
May, R. M. (1977). Togetherness among schistosomes: its effect on the dynamics of the infection. Mathematical Biosciences 35, 301343.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249267.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1979). Population biology of infectious diseases: Part II. Nature 280, 455461.Google Scholar
May, R. M. & Anderson, R. M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London, Series B 219, 281313.Google ScholarPubMed
May, R. M. & Anderson, R. M. (1984). Spatial heterogeneity and the design of immunization programs. Mathematical Biosciences 72, 83111.CrossRefGoogle Scholar
Mena-Lorca, J. & Hethcote, H. W. (1992). Dynamic models of infectious diseases as regulators of population sizes. Journal of Mathematical Biology 30, 639716.Google ScholarPubMed
Minchella, D. J., Sollenberger, K. M. & Pereira De Souza, C. (1995). Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology 111, 217220.CrossRefGoogle ScholarPubMed
Nesse, J. W. & Williams, G. C. (1995). Evolution and healing. London: Weidenfield and Nicholson.Google Scholar
Norman, R., Begon, M. & Bowers, R. G. (1994). The population dynamics of microparasites and vertebrate hosts: the importance of immunity and recovery. Theoretical Population Biology 46, 96119.CrossRefGoogle ScholarPubMed
Nowak, M., Anderson, R. M., McLean, A. R., Goudsmit, J. & May, R. M. (1991). Antigenic diversity thresholds and the development of AIDS. Science 254, 963969.CrossRefGoogle ScholarPubMed
Nowak, M. A. & May, R. M. (1994). Superinfection and the evolution of virulence. Proceedings of the Royal Society, London Series B 255, 8189.Google Scholar
Nowak, M. A., May, R. M., Phillips, R. E., Rowland-Jones, S., Lalloo, D. G., McAdam, S., Klenerman, P., Koppe, B., Sigmund, K., Bangham, C. R. M. & McMichael, A. J. (1995). Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375, 606611.Google Scholar
Paul, R. E. L., Packer, M. J., Walmsley, M., Lagog, M., Ranford-Cartwright, L. C., Paru, R. & Day, K. P. (1995). Mating Patterns in Malaria Parasite Populations of Papua New Guinea. Science 269, 17091711.Google Scholar
Robertson, D. L., Sharp, P. M., McCautchan, F. E. & Hahn, B. H. (1995). Recombinations in HIV-1. Nature 374, 124136.Google Scholar
Schweitzer, N. & Anderson, R. M. (1992). The regulation of immunological responses to parasitic infections and the development of tolerance. Proceedings of the Royal Society, London Series B 247, 107112.Google Scholar
Scott, M. E. (1986). Suppression of mouse colony abundance by a helminth parasite infection. Science (submitted).Google Scholar
Scott, M. E. & Smith, G. (1994). Parasitic and Infectious Diseases. Academic Press, New York.Google Scholar
Swinton, J., Tuyttens, F., Macdonald, D. & Cheesesman, C. L. (1996). Social perturbation and bovine tuberculosis in badgers: fertility control and lethal control compared. Journal of Animal Ecology (in press).Google Scholar
Travers, K., Mboup, S., Marlink, R., Gueye-Ndiaye, A., Siby, T., Thior, I., Traore, I., Dieng-Sarr, A., Sankale, J.-L., Mullins, C., Ndoye, I., Hsieh, C-C., Essex, M. & Kanki, P. (1995). Natural protection against HIV-1 Infection provided by HIV-2. Science 268, 16121618.Google Scholar
White, P. C. L. & Harris, S. (1995). Bovine tuberculosis in badger (Meles meles) populations in southwest England: the use of a spatial stochastic simulation model to understand the dynamics of the disease. Philosophical Transactions of the Royal Society, London Series B. 349, 415432.Google Scholar