Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T14:13:47.204Z Has data issue: false hasContentIssue false

Experimental infections, using a fluorescent marker, of two elasmobranch species by unciliated larvae of Branchotenthes octohamatus (Monogenea: Hexabothriidae): invasion route, host specificity and post-larval development

Published online by Cambridge University Press:  23 March 2007

V. GLENNON*
Affiliation:
Marine Parasitology Laboratory, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia
L. A. CHISHOLM
Affiliation:
Marine Parasitology Laboratory, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia
I. D. WHITTINGTON
Affiliation:
Marine Parasitology Laboratory, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia Monogenean Research Laboratory, Parasitology Section, The South Australian Museum, North Terrace, South Australia 5000, Australia
*
*Corresponding author: Marine Parasitology Laboratory, Darling Building (DP418), School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia. Tel: +61 8 8303 3990. Fax: +61 8 8303 4364. E-mail: vanessa.glennon@adelaide.edu.au

Summary

The infection biology of Branchotenthes octohamatus (Monogenea: Hexabothriidae) from the gills of the southern fiddler ray, Trygonorrhina fasciata (Rhinobatidae), was studied using the fluorescent dye, 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CFSE). This is the first use of this technique on a monogenean species with unciliated larvae and the first for any monogenean larva infecting an elasmobranch host. CFSE-labelled post-larvae were recovered from gills of T. fasciata within 30 min of exposure to the host, providing strong evidence that larvae invade host gills directly and do not migrate after initial attachment elsewhere. The rapidity with which larvae settled suggests that the mode of infection may deliver larvae directly to the gills via the host's inhalant respiratory current. The specificity of B. octohamatus was investigated by exposing a sympatric rhinobatid host species, the western shovelnose ray, Aptychotrema vincentiana, to B. octohamatus larvae newly emerged from eggs laid by adult parasites from gills of T. fasciata. Experimental exposure of A. vincentiana to freshly hatched B. octohamatus larvae resulted in a persistent infection, indicating that B. octohamatus may not be strictly host specific. Post-larval development charted on these experimentally infected A. vincentiana specimens was slow. Parasites appeared to be sexually mature at 91 days at 21–25°C. Branchotenthes octohamatus larvae bear only 4 pairs of hooklets on the haptor whereas all other hexabothriid larvae described so far have 5 hooklet pairs. Ontogenetic changes to the haptor revealed that it is probably hooklet pair III that is lost from B. octohamatus prior to larval development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boeger, W. A. and Kritsky, D. C. (1993). Phylogeny and a revised classification of the Monogenoidea Bychowsky, 1937 (Platyhelminthes). Systematic Parasitology 26, 132.CrossRefGoogle Scholar
Bondad-Reantaso, M. G., Ogawa, K., Fukudome, M. and Wakabayashi, H. (1995). Reproduction and growth of Neobenedenia girellae (Monogenea: Capsalidae), skin parasite of cultured marine fishes of Japan. Fish Pathology 30, 227231.Google Scholar
Bovet, J. (1967). Contribution à la morphologie et à la biologie de Diplozoon paradoxum V. Nordmann, 1832. Bulletin de la Société Neuchâteloise des Sciences Naturelles 90, 63159.Google Scholar
Bronner-Fraser, M. (1985). Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. The Journal of Cell Biology 101, 610617.Google Scholar
Brooks, D. R. and McLennan, D. A. (1993). Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes: Cercomeria). The American Naturalist 142, 755778.CrossRefGoogle ScholarPubMed
Bychowsky, B. E. (1957). [Monogenetic Trematodes, their Systematics and Phylogeny.] Izdatel'stvo Akademii Nauk SSSR, Moscow – Leningrad. (In Russian; English translation edited by Hargis, W.J. Jr. (1961).) American Institute of Biological Sciences, Washington, D.C.Google Scholar
Chigasaki, M., Nakane, M., Ogawa, K. and Wakabayashi, H. (2000). Standardized method for experimental infection of tiger puffer Takifugu rubripes with oncomiracidia of Heterobothrium okamotoi (Monogenea: Diclidophoridae) with some data on the oncomiracidial biology. Fish Pathology 35, 215221.CrossRefGoogle Scholar
Chisholm, L. A. and Whittington, I. D. (2002). Efficacy of Praziquantel bath treatments for monogenean infections of the Rhinobatos typus. Journal of Aquatic Animal Health 14, 230234.Google Scholar
Chisholm, L. A. and Whittington, I. D. (2003). Invasion of the shovelnose ray (Rhinobatos typus) by Neoheterocotyle rhinobatidis and Merizocotyle icopae (Monogenea: Monocotylidae). Parasitology 127, 561570.CrossRefGoogle ScholarPubMed
Cone, D. K. and Burt, M. D. B. (1981). The invasion route of the gill parasite Urocleidus adspectus Mueller, 1936 (Monogenea: Ancyrocephalinae). Canadian Journal of Zoology 59, 21662171.Google Scholar
Desdevises, Y., Morand, S. and Legendre, P. (2002). Evolution and determinants of host specificity in the genus Lamellodiscus (Monogenea). Biological Journal of the Linnean Society 77, 431443.Google Scholar
Dutta, M. and Tandon, V. (2000). Developmental pattern and larval stages of Polystoma indicum Diengdoh & Tandon, 1991 (Monogenea: Polystomatidae) in rhacophorid anurans. Journal of Zoology 250, 129139.Google Scholar
Euzet, L. and Raibaut, A. (1960). Le développement postlarvaire de Squalonchocotyle torpedinis (Price 1942) (Monogenea, Hexabothriidae). Bulletin de la Société Neuchâteloise des Sciences Naturelles 83, 101108.Google Scholar
Frankland, H. M. T. (1955). The life history and bionomics of Diclidophora denticulata (Trematoda: Monogenea). Parasitology 45, 313351.Google Scholar
Gannicott, A. M. and Tinsley, R. C. (1998). Larval survival characteristics and behaviour of the gill monogenean Discocotyle sagittata. Parasitology 117, 491498.Google Scholar
Glennon, V., Chisholm, L. A. and Whittington, I. D. (2005). Branchotenthes octohamatus sp. n. (Monogenea: Hexabothriidae) from the gills of the southern fiddler ray, Trygonorrhina fasciata (Rhinobatidae) in South Australia: description of adult and larva. Folia Parasitologica 52, 223230.Google Scholar
Glennon, V., Chisholm, L. A. and Whittington, I. D. (2006). Three unrelated species, 3 sites, same host – monogenean parasites of the southern fiddler ray, Trygonorrhina fasciata, in South Australia: egg hatching strategies and larval behaviour. Parasitology 133, 5566.Google Scholar
Kearn, G. C. (1984). The migration of the monogenean Entobdella soleae on the surface of its host, Solea solea. International Journal for Parasitology 14, 6369.CrossRefGoogle Scholar
Llewellyn, J. (1963). Larvae and larval development of monogeneans. Advances in Parasitology 1, 287326.Google Scholar
Llewellyn, J. (1970). Monogenea. In Technical Review: Taxonomy, Genetics and Evolution of Parasites'. Second International Congress of Parasitology. Journal of Parasitology 56, 493504.Google Scholar
Paling, J. E. (1969). The manner of infection of trout gills by the monogenean parasite Discocotyle sagittata. Journal of Zoology 159, 293309.Google Scholar
Roff, J. C. and Hopcroft, R. R. (1986). High precision microcomputer based measuring system for ecological research. Canadian Journal of Fisheries and Aquatic Sciences 43, 20442048.Google Scholar
Rubio-Godoy, M. and Tinsley, R. C. (2002). Trickle and single infection with Discocotyle sagittata (Monogenea: Polyopisthocotylea): effect of exposure mode on parasite abundance and development. Folia Parasitologica 49, 269278.CrossRefGoogle ScholarPubMed
Whittington, I. D., Chisholm, L. A. and Rohde, K. (2000). The larvae of Monogenea (Platyhelminthes). Advances in Parasitology 44, 139232.Google Scholar
Whittington, I. D. and Ernst, I. (2002). Migration, site-specificity and development of Benedenia lutjani (Monogenea: Capsalidae) on the surface of its host, Lutjanus carponotatus (Pisces: Lutjanidae). Parasitology 124, 423434.Google Scholar
Wiskin, M. (1970). The oncomiracidium and post-oncomiracidial development of the hexabothriid monogenean Rajonchocotyle emarginata. Parasitology 60, 457479.Google Scholar
Yokoyama, H. and Urawa, S. (1997). Fluorescent labelling of actinospores for determining the portals of entry into fish. Diseases of Aquatic Organisms 30, 165169.CrossRefGoogle Scholar