Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T03:24:47.060Z Has data issue: false hasContentIssue false

Feeding behaviour of pathogen-infected vectors

Published online by Cambridge University Press:  06 April 2009

D. H. Molyneux
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
D. Jefferies
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT

Extract

Evidence from many sources indicates that, in several parasite–vector systems, flight ability, fecundity or gonotrophic concordance of vectors, are affected by parasites (including bacteria, rickettsia and viruses) and in some cases parasites cause well-documented pathogenic effects (see reviews, for example, by Lavoipierre (1958a) and Hawking & Worms (1961) on filaria; Molyneux (1977, 1983) for trypanosomatids; Killick-Kendrick (1979) for Leishmania).

Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S. & Ber, M. (1941). The transmission of Leishmania tropica by the bite of Phlebotomus papatasi. Indian Journal of Medical Research 29, 803909.Google Scholar
Adler, S. & Theodor, O. (1935). Investigation on Mediterranean kala-azar. IX. Feeding experiments with Phlebotomus perniciosus and other species on animals infected with Leishmania infantum. Proceedings of the Royal Society of London, B 116, 516–42.Google Scholar
Aitken, T. H. G., Tesh, R. B., Beaty, B. J. & Rosen, L. (1979). Transovarial transmission of yellow fever virus by mosquitoes (Aedes aegypti). American Journal of Tropical Medicine and Hygiene 28, 119–21.Google Scholar
Anderson, R. M. (1981). Population dynamics of indirectly transmitted disease agents: the vector component. In Vectors of Disease Agents: Interactions with Plants, Animals and Man, (ed. McKelvey, J., Eldridge, B. and Maramorosch, K.). New York Praeger.Google Scholar
Anez, N. (1981). Trypanosomatidae of Venezuela with special reference to Trypanosoma rangeli and Leishmania garnhami. Ph.D. thesis, London University.Google Scholar
Anez, N. & East, J. S. (1984). Studies on Trypanosoma rangeli Tejera, 1920. II. Its effect on feeding behaviour of triatomine bugs. Acta Tropica 41, 93–5.Google Scholar
Bacot, A. W. (1915). Further notes on the mechanism of the transmission of plague by fleas. Journal of Hygiene, Plague Suppl. IV, 775–6.Google ScholarPubMed
Bacot, A. M. & Martin, C. J. (1914). Observations on the mechanism of the transmission of plague by fleas. Journal of Hygiene, Plague Suppl. III, 423–39.Google Scholar
Beach, R., Kiilu, G., Hendricks, L., Oster, C. & Leeuwenburg, J. (1984). Cutaneous leishmaniasis in Kenya: transmission of Leishmania major to man by the bite of a naturally infected Phlebotomus duboscqi. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 747–51.CrossRefGoogle Scholar
Beach, R., Kiilu, G. & Leeuwenburg, J. (1985). Modification of sand fly biting behaviour by Leishmania leads to increased parasite transmission. American Journal of Tropical Medicine and Hygiene 34, 279–83.Google Scholar
Beaty, B. J. & Thompson, W. H. (1976). Delineation of La Crosse virus in developmental stages of transovarially infected Aedes triseriatus. American Journal of Tropical Medicine and Hygiene 25, 505–12.CrossRefGoogle ScholarPubMed
Bertram, D. S. (1949). Studies on the transmission of cotton rat filariasis. I. The variability of the intensities of infection in the individuals of the vectors, Liponyssus bacoti, its causation and bearing on the problem of quantitative transmission. Annals of Tropical Medicine and Parasitology 43, 313–32.Google Scholar
Bibikova, V. A. (1977). Contemporary views on the inter-relationships between fleas and the pathogens of human and animal disease. Annual Review of Entomology 22, 2332.CrossRefGoogle Scholar
Burrows, T. W. (1963). Virulence of P. pestis and immunity to plague. Ergebnisse der Mikrobiologie, Immunitcitäts forschung und experimentellen Therapie 37, 59113.Google Scholar
Bursell, E. (1981). Energetics of haematophagous arthropods: influence of parasites. Parasitology 82, 107–10.Google Scholar
Cavanaugh, D. C. (1971). Specific effect of temperature upon transmission of the plague bacillus by the Oriental rat flea, Xenopsylla cheopis. American Journal of Tropical Medicine and Hygiene 20, 264–73.CrossRefGoogle ScholarPubMed
Cavanaugh, D. C. & Marshall, J. D. Jr, (1972). The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. Journal of Wildlife Diseases 8, 7685.Google Scholar
Chung, H. L., Feng, L.-C. & Feng, S.-L. (1951). Observations concerning the successful transmission of kala-azar in North China by the bites of naturally infected Phlebotomus chinensis. Peking Natural History Bulletin 19, 302–26.Google Scholar
D'Alessandro, A. & Mandel, S. (1969). Natural infections and behaviour of Trypanosoma rangeli and Trypanosoma cruzi in the vector Rhodnius prolixus in Colombia. Journal of Parasitology 55, 846–52.Google Scholar
DeLeon, J. R. & Duke, B. O. L. (1966). Experimental studies on the transmission of Guatemalan and West African strains of Onchocerca volvulus by Simulium ochraceum, S. metallicum and S. callidum. Transactions of the Royal Society of Tropical Medicine and Parasitology 60, 735–52.Google Scholar
Denham, D. A. & McGreevy, P. B. (1977). Brugian filariasis: epidemiological and experimental studies. Advances in Parasitology 15, 243309.CrossRefGoogle ScholarPubMed
Douglas, J. R. & Wheeler, C. M. (1943). Sylvatic plague studies. II. The fate of Pasteurella pestis in the flea. Journal of Infectious Diseases 72, 1830.CrossRefGoogle Scholar
Galun, R. (1966). Feeding stimulants of the rat flea, Xenopsylla cheopis Roth. Life Sciences 5, 1335–42.Google Scholar
Galun, R. (1967). Feeding stimuli and artificial feeding. Bulletin of the World Health Organization 36, 590–3.Google Scholar
Garnham, P. C. G., Heisch, R. B. & Minter, D. M. (1961). The vector of Hepatocystis ( = Plasmodium) kochi: the successful conclusion of observations in many parts of tropical Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 497502.Google Scholar
Gillet, J. D. (1967). Natural selection and feeding speed in a blood-sucking insect. Proceedings of the Royal Society of London, B 167, 316–27.Google Scholar
Golder, T. & Patel, N. (1980). Some effects of trypanosome development on the saliva and salivary glands of the tsetse fly G. morsitans. European Journal of Cell Biology 22, 511.Google Scholar
Grewal, M. S. (1957). Pathogenicity of Trypanosoma rangeli Tejera, 1920 in the invertebrate host. Experimental Parasitology 6, 123–30.CrossRefGoogle ScholarPubMed
Grimstad, P. R., Ross, Q. E. & Craig, G. B. Jr, (1980). Aedes triseriatus (Diptera: Culicidae) and La Crosse virus. II. Modification of mosquito feeding behaviour by virus infection. Journal of Medical Entomology 17, 17.CrossRefGoogle ScholarPubMed
Hawking, F. & Worms, M. (1961). Transmission of filarioid nematodes. Annual Review of Entomology 6, 413–32.CrossRefGoogle ScholarPubMed
Hockmeyer, W. T., Schieffer, B. A., Redington, B. C. & Eldridge, B. F. (1975). Brugia pahangi: effects upon the flight capability of Aedes aegypti. Experimental Parasitology 38, 15.Google Scholar
Jackman, H., Zweypfenning, R. C. V. J. & Van Der Molen, J. N. (1982). Effects of haemolymph free cations on blowfly taste receptor responses. Journal of Insect Physiology 28, 943–6.Google Scholar
Janzen, H. G. & Wright, K. A. (1971). The salivary glands of Aedes aegypti (L.). An electron microscope study. Canadian Journal of Zoology 49, 1343–5.CrossRefGoogle ScholarPubMed
Javadian, E. & MacDonald, W. W. (1974). The effect of infection with Brugia pahangi and Dirofilaria repens on the egg-production of Aedes aegypti. Annals of Tropical Medicine and Parasitology 68, 477–81.CrossRefGoogle ScholarPubMed
Jefferies, D. (1984). Transmission of disease by haematophagous arthropods: host-parasite interactions and fluid mechanics. Ph.D. thesis, University of Salford.Google Scholar
Jefferies, D. & Molyneux, D. H. (1983). Feeding behaviour of the mite Ornithonyssus bacoti infected with Litomosoides carinii. Parasitology 87, lxiv.Google Scholar
Jefferies, D., Livesey, J. L. & Molyneux, D. H. (1986). Fluid mechanics of bloodmeal uptake by Leishmania infected sandflies. Acta Tropica (in the Press).Google ScholarPubMed
Jenni, L., Molyneux, D. H., Livesey, J. L. & Galun, R. (1980). Feeding behaviour of tsetse flies infected with salivarian trypanosomes. Nature, London 283, 383–5.Google Scholar
Jordan, A. M. (1976). Tsetse flies as vectors of trypanosomes. Veterinary Parasitology 2, 143–52.CrossRefGoogle Scholar
Kartman, L., Prince, F. M. & Quan, S. F. (1956). Studies on Pasteurella pestis in fleas: comparative plague-vector efficiency of Xenopsylla vexabilis hawaiiensis and Xenopsylla cheopis. Bulletin of the World Health Organization 14, 681704.Google Scholar
Kershaw, W. E. & Storey, D. M. (1976). Host parasite relations in cotton rat filariasis. II. The quantitative transmission and subsequent development of Litomosoides carinii infections in cotton rats and other laboratory animals. Annals of Tropical Medicine and Parasitology 70, 303–12.Google Scholar
Kershaw, W. E., Beesley, W. H. & Crewe, W. (1955). Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. VI. Further observations on the intake of the microfilariae of Loa loa and Acanthocheibonema perstans by Chrysops silacea in laboratory conditions: the pattern of the intake of a group of flies. Annals of Tropical Medicine and Parasitology 49, 114–20.Google Scholar
Killick-Kendrick, R. (1979). Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida, vol. 2 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 396460London: Academic Press.Google Scholar
Killick-Kendrick, R., Leaney, A. J., Peters, W., Rioux, J.-A. & Bray, R. S. (1985). Zoonotic cutaneous leishmaniasis in Saudi Arabia: the incrimination of Phlebotomus papatasi as the vector in the Al-Hassa oasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 252–5.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R. & Molyneux, D. H. (1981). Transmission of leishmaniasis by the bite of phlebotomine sandflies: possible mechanisms. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 152–4.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R., Leaney, A. J., Ready, P. D. & Molyneux, D. H. (1977). Leishmania in phlebotomid sandflies. IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis. Proceedings of the Royal Society of London B 196, 105–15.Google ScholarPubMed
Lam, K. S. K. & Marshall, I. D. (1968). Dual infections of Aedes aegypti with arboviruses. II. Salivary gland damage by Semliki Forest virus in relation to dual infections. American Journal of Tropical Medicine and Hygiene 17, 637–44.Google Scholar
Lavoipierre, M. M. J. (1958 a). Studies on the host parasite relationships of filarial nematodes and their arthropod hosts. II. The arthropod as a host to the nematode: a brief appraisal of our present knowledge based on a study of the more important literature from 1878 to 1957. Annals of Tropical Medicine and Parasitology 52, 326–45.Google Scholar
Lavoipierre, M. M. J. (1958 b). Studies on the host parasite relationships of filarial nematodes and their arthropod hosts. I. The sites of development and the migration of Loa loa in Chrysops silacea, the escape of the infective forms from the head of the fly, and the effect of the worm on its insect hosts. Annals of Tropical Medicine and Parasitology 52, 103–21.Google Scholar
Lewis, D. J. (1984). Trophic sensilla of phlebotomine sandflies. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 416.Google Scholar
Lindsay, S. W. (1984). Studies on the migration and transmission of Brugia pahangi infective larvae in Aedes aegypti. Ph.D. thesis, University of London.Google Scholar
Lindsay, S. W. & Denham, D. A. (1985). The effect of different types of skin surfaces on the transmission of Brugia pahangi infective larvae by the mosquito Aedes aegypti. Transactions of the Royal Society of Tropical Medicine and Hygiene. 79, 56–9.CrossRefGoogle ScholarPubMed
Lindsay, S. W., Denham, D. A. & McGreevey, P. B. (1984). The effect of humidity on the transmission of Brugia pahangi infective larvae to mammalian hosts by Aedes aegypti. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 1922.Google Scholar
Livesey, J. L., Molyneux, D. H. & Jenni, L. (1980). Mechanoreceptor-trypanosome interactions in the labrum of Glossina: fluid mechanics. Acta Tropica 37, 151–61.Google Scholar
Mims, C. A., Day, M. F. & Marshall, I. D. (1966). Cytopathic effects of Semliki Forest virus in the mosquito Aedes aegypti. American Journal of Tropical Medicine and Hygiene 15, 775–84.Google Scholar
Moloo, S. K. (1983). Feeding behaviour of Glossina morsitans morsitans infected with Trypanosoma vivax, T. congolense or T. brucei. Parasitology 86, 51–6.CrossRefGoogle ScholarPubMed
Moloo, S. K. & Dar, F. (1985). Probing by Gbossina morsitans centralis infected with pathogenic Trypanosoma species. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 119.Google Scholar
Molyneux, D. H. (1977). Vector relationships in the Trypanosomatidae. Advances in Parasitology 15, 182.Google Scholar
Molyneux, D. H. (1980). Host-trypanosome interactions in Glossina. Insect Science and its Application 1, 3946.Google Scholar
Molyneux, D. H. (1983). Host-parasite relationships of Trypanosomatidae in vectors. In Current Topics in Vector Research, vol. 1 (ed. Harris, K. F.) pp. 117148. New York: Praeger Scientific.Google Scholar
Molyneux, D. H. & Jenni, L. (1981). Mechanoreceptors, feeding behaviour and trypanosome transmission in Glossina. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 160–2.Google Scholar
Molyneux, D. H. & Killick-Kendrick, R. (1986). Morphology, ultrastructure and life cycles. In The Leishmaniases in Biology and Medicine (in the Press).Google Scholar
Molyneux, D. H., Lavin, D. R. & Elce, B. (1979). A possible relationship between salivarian trypanosomes and Glossina labrum mechanoreceptors. Annals of Tropical Medicine and Parasitology 73, 287–90.Google Scholar
Nelson, G. S. (1964). Factors influencing the development and behaviour of filarial nematodes in their arthropodan hosts. In Host-Parasite Relationships in Invertebrate Hosts. Symposia of the British Society for Parasitology, vol. 2 (ed. Taylor, A. E. R.). Oxford: Blackwell Scientific Publications.Google Scholar
Neumann, R. O. (1980). Die Übertragung von Plasmodium praecox auf Kanarienvogel durch Stegomyia fasciata und die Entwicklung der Parasiten im Magen und der Speilcheldrusen dieser Stechumcke. Archiv für Protistenkunde 13, 2369.Google Scholar
Renz, A. & Wenx, P. (1981). Intracellular development of the cotton rat filaria Litomosoides carinii in the vector mite Ornithonyssus bacoti. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 166–8.Google Scholar
Ribeiro, J. M. C., Rossignol, P. A. & Speilman, A. (1985). Aedes aegypti: model for blood finding strategy and prediction of parasite manipulation. Experimental Parasitology 60, 118–32.Google Scholar
Rice, M. J., Galun, R. & Margalit, J. (1973). Mouthpart sensilla of the tsetse fly and their function. III. Labrocibarial sensilla. Annals of Tropical Medicine and Parasitology 67, 109–16.Google Scholar
Roberts, L. W. (1981). Probing by Glossina morsitans morsitans and transmission of Trypanosoma (Nannomonas) congolense. American Journal of Tropical Medicine and Hygiene 30, 948–51.Google Scholar
Rossignol, P. A., Ribeiro, J. M. C. & Spielman, A. (1984). Increased intradermal probing time in sporozoite-infected mosquitoes. American Journal of Tropical Medicine and Hygiene 33, 1720.Google Scholar
Ryan, L. (1984). The effect of trypanosome infections on a natural population of Glossina longipalpis Wiedemann (Diptera: Glossinidae) in Ivory Coast. Acta Tropica 41, 355–9.Google Scholar
Sterling, C. R., Aikawa, M. & Vanderberg, J. P. (1973). The passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: an electron microscope study. Journal of Parasitology 59, 593605.Google Scholar
Strangways-Dixon, J. & Lainson, R. (1966). The transmission of Leishmania mexicana to man by Phlebotomus pessoanus with observations on the development of the parasite in different species of Phlebotomus. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 192207.Google Scholar
Tarimo, S. R., Snow, F. W., Butler, L. & Dransfield, R. D. (1985). Estimation of the probability of tsetse in the field acquiring trypanosome infection and the barriers to infection. Acta Tropica 42, 199207.Google Scholar
Tarimo, S. A., Golder, T. K., Dransfield, R. D., Chaudhury, M. F. B. & Brightwell, R. (1985). Preliminary observations on trypanosome infection rates in Glossina pallidipes at Nkruman, Kenya and the factors affecting them. Proceedings ISCTRC,Organization of African Unity,Nairobi (in the Press).Google Scholar
Thevenaz, P. H. & Hecker, H. (1980). Distribution and attachment of Trypanosoma (Nannomonas) congolense in the proximal part of the proboscis of Glossina. Acta Tropica 37, 163–75.Google Scholar
Tobie, E. J. (1961). Experimental transmission and biological comparison of strains of Trypanosoma rangeli. Experimental Parasitology 11, 19.Google Scholar
Townson, H. (1970). The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Annals of Tropical Medicine and Parasitology 64, 411–20.Google Scholar
Townson, H. (1971). Mortality of various genotypes of the mosquito Aedes aegypti following the uptake of microfilariae of Brugia pahangi. Annals of Tropical Medicine and Parasitology 65, 93106.Google Scholar
Vickerman, K. (1973). The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. Journal of Protozoology 20, 394404.Google Scholar
Wenk, P. (1953). Der Kopf von Ctenocephalus canis (Curt.) (Aphaniptera). Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere 73, 103–64.Google Scholar
Wenk, P. & Lantow, S. (1982). Infestation der Milbe Ornithonyssus bacoti Hirst 1913 (Acari) mit Mikrofilarien von Litomosoides carinii Chandler., 1931 (Nematoda, Filariodea) bei kunstlicher Futterung mit Blut von Baumwollratten Sigmodon hispidus. Zeitschrift für angewandte Entomologie 93, 523532.Google Scholar
Williams, P. (1966). Experimental transmission of Leishmania mexicana by Lutzomyia cruciata. Annals of Tropical Medicine and Parasitology 67, 365–72.Google Scholar
Williams, P. & Coelho, M. V. (1978). Taxonomy and transmission of Leishmania. Advances in Parasitology 16, 142.CrossRefGoogle ScholarPubMed
Williamson, J. (1956). The composition of tsetse fly saliva. II. Analysis of amino acids and sugars by paper partition chromatography. Annals of Tropical Medicine and Parasitology 50, 334–44.Google Scholar
Zielke, E. (1976). Studies on quantitative aspects of the transmission of Wuchereria bancrofti. Zeitschrift für Tropen.medizin und Parasitologie 27, 160–4.Google Scholar