Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T01:49:45.020Z Has data issue: false hasContentIssue false

Fish macroparasites as indicators of heavy metal pollution in river sites in Austria

Published online by Cambridge University Press:  10 November 2003

C. SCHLUDERMANN
Affiliation:
Institut für Ökologie und Naturschutz, Universität Wien, Althanstrasse 14, A-1090, Wien
R. KONECNY
Affiliation:
Institut für Ökologie und Naturschutz, Universität Wien, Althanstrasse 14, A-1090, Wien
S. LAIMGRUBER
Affiliation:
Institut für Ökologie und Naturschutz, Universität Wien, Althanstrasse 14, A-1090, Wien
J. W. LEWIS
Affiliation:
Royal Holloway College, University of London, Egham, TW20 OEX, Surrey
F. SCHIEMER
Affiliation:
Royal Holloway College, University of London, Egham, TW20 OEX, Surrey
A. CHOVANEC
Affiliation:
Umweltbundesamt, Spittelauer Lände 5, A-1090, Wien
B. SURES
Affiliation:
Zoologisches Institut – Ökologie, Universität Karlsruhe, Kaiserstrasse 12, 78128, Karlsruhe

Abstract

This paper describes two approaches to evaluate the use of fish macroparasites as bioindicators of heavy metal pollution at selected river stretches in Austria. Firstly changes in the diversity and richness of endoparasites of the cyprinid barbel, Barbus barbus (L.), were tested in relation to heavy metal contents in the aquatic system. Secondly, the bioaccumulation potential of cadmium, lead and zinc was assessed in the acanthocephalan, Pomphorhynchus laevis (Müller, 1776), and compared with that in the muscle, liver and intestine of its barbel host. The present results indicated that in order to validate the role of parasite community patterns related to heavy metal pollution, more investigations on food web dynamics, interelationships between parasites and the presence/absence of intermediate hosts will be essential. Heavy metal concentrations differed significantly between the organs of barbel and P. laevis (P=0·001) with levels up to 2860 fold in the parasite. The high level of heavy metal accumulation in P. laevis compared with that in its barbel host, suggests that despite variability in the parasite infrapopulation, host mobility and feeding behaviour, P. laevis is a most sensitive indicator of heavy metals in aquatic ecosystems.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BAGGE, A. & VALTONEN, E. T. (1996). Experimental study on the influence of paper and pulp mill effluent on the gill parasite communities of roach (Rutilus rutilus). Parasitology 112, 499508.CrossRefGoogle Scholar
BUSH, A. O., LAFFERTY, K. D., LOTZ, J. M. & SHOSTAK, A. W. (1997). Parasitology meets ecology on its own terms, Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
COLWELL, R. K. (1997). EstimateS: Statistical estimation of species richness and shared species from samples. Version 6.0b1. User's Guide and application published at: http://viceroy.eeb.uconn.edu/estimates.
D'AMELIO, S. & GERASI, L. (1997). Evaluation of environmental deterioration by analysing fish parasite populations and communities. Parassitologia 39, 237241.Google Scholar
DEUTSCHES INSTITUT FÜR NORMUNG E. V (1998). DIN 38406–6, German standard methods for the examination of water, waste water and sludge – Cations (group E) – Part 6, Determination of lead by atomic absorption spectrometry (AAS) (E 6). Deutsches Institut für Normung e. V, Berlin.
DUSEK, L., GELNAR, M. & SEBELOVÁ, S. (1998). Biodiversity of parasites in a freshwater environment with respect to pollution, metazoan parasites of chub (Leuciscus cephalus L.) as a model for statistical evaluation. International Journal for Parasitology 28, 15551571.Google Scholar
FRIEDL, T. & KERSCHBAUMER, G. (2000). Forschungsprojekt Ökosystem Flusskraftwerk Rossegg – St. Jakob, Stand und Zukunftsperspektiven der Bewirtschaftung. Kärntner Institut für Seenforschung.
GELNAR, M., KOUBKOVÁ, B., PLÁNKOVÁ, P. & JURAJDA, P. (1994). Report on metazoan parasites of fishes of the river Morava with remarks on the effects of water pollution. Helminthologia 31, 4756.Google Scholar
GELNAR, M., SEBELOVÁ, S., DUSEK, L., KOUBKOVÁ, B., JURAJDA, P. & ZAHRÁDKOVÁ, S. (1997). Biodiversity of parasites in freshwater environment in relation to pollution. Parassitologia 39, 189199.Google Scholar
HALMETOJA, A., VALTONEN, E. T. & KOSKENNIEMI, E. (2000). Perch (Perca fluviatilis L.) parasites reflect ecosystem conditions: a comparison of a natural lake and two artificial reservoirs in Finland. International Journal for Parasitology 30, 14371444.Google Scholar
KENNEDY, C. R. (1993). The dynamics of intestinal helminth communities in eels Anguilla anguilla in a small stream: long-term changes in richness and structure. Parasitology 107, 7178.CrossRefGoogle Scholar
KENNEDY, C. R. (1997). Freshwater fish parasites and environmental quality, an overview and caution. Parassitologia 39, 249254.Google Scholar
KENNEDY, C. R., BUSH, A. O. & AHO, J. M. (1986). Patterns in helminth communities: why are birds and fish different? Parasitology 93, 205215.Google Scholar
KONECNY, R., SCHABUSS, M. & SCHIEMER, F. (1996). Ecology of helminths parasitising barbel Barbus barbus L. Proceedings of the Spring Meeting of the British Society of Parasitology 1996, 2022.
KOSKIVAARA, M. (1992). Environmental factors affecting monogeneans parasitic on freshwater fishes. Parasitology Today 8, 339342.CrossRefGoogle Scholar
MAGURRAN, A. E. (1988). Ecological Diversity and its Measurement. London, Cambridge University Press.CrossRef
MARCOGLIESE, D. J. & CONE, D. K. (1997). Parasite communities as indicators of ecosystem stress. Parassitologia 39, 227232.Google Scholar
MERIAN, E. (1991). Metals and their Compounds in Environment and Life. Occurrence, Analysis and Biological Relevance. New York, Verlag Chemie Weinheim.
MOOG, O., HUMPESCH, U. H. & KONAR, M. (1995). The distribution of benthic invertebrates along the Austrian stretch of the River Danube and its relevance as an indicator of zoogeographical and water quality patterns, part 1. Archiv Hydrobiology 100, 121213.CrossRefGoogle Scholar
MOOG, O., NESEMANN, H. & WAIDBACHER, H. (1991). Makrozoobenthos-Zönosen ausgewählter Standorte der Donau zwischen Strom-Km 2203 und 2170. Erweiterte Zusammenfassung, Deutsche Gesellschaft für Limnologie (DGL), Jahrestagung 1991, Mondsee, 290294.
MORAVEC, F. & SCHOLZ, T. (1994). Seasonal occurrence and maturation of Neoechinorhynchus rutili (Acanthocephala) in barbel, Barbus barbus (Pisces), of the Jihlava River, Czech Republic. Parasite 1, 271277.CrossRefGoogle Scholar
MORAVEC, F. & SCHOLZ, T. (1995). Life history of the nematode Rhabdochona hellichi, a parasite of the barbel in the Jihlava River, Czech Republic. Journal of Helminthology 69, 5964.CrossRefGoogle Scholar
MORAVEC, F., KONECNY, R., BASKA, F., RYDLO, M., SCHOLZ, T., MOLNÁR, K. & SCHIEMER, F. (1997). Endohelminth fauna of barbel, Barbus barbus (L.), under ecological conditions of the Danube basin in Central Europe. Studie AV CR cislo 3/97. Academia, Praha.
ÖSTERREICHISCHES NORMUNGSINSTITUT (1998). OENORM EN ISO 11885, Water quality – Determination of 33 elements by inductively coupled plasma atomic emission spectroscopy. Wien, Österreichisches Normungsinstitut.
ÖSTERREICHISCHES NORMUNGSINSTITUT OENORM EN ISO 5961 (1995). OENORM EN ISO 5961, Water quality – Determination of cadmium by atomic absorption spectrometry. Wien, Österreichisches Normungsinstitut.
OVERSTREET, R. M. (1997). Parasitological data as monitors of environmental health. Parassitologia 39, 169175.Google Scholar
RUMPUS, A. E. & KENNEDY, C. R. (1974). The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its host, Gammarus pulex. Parasitology 68, 271284.CrossRefGoogle Scholar
SCHABUSS, M., KONECNY, R., BELPAIRE, C. & SCHIEMER, F. (1997). Endoparasitic helminths of the European eel, Anguilla anguilla, from four disconnected meanders from the rivers Leie and Scheldt in western Flanders, Belgium, Folia Parasitologica 44, 1218.Google Scholar
SIDDALL, R. & SURES, B. (1998). Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and inmature worms in chub (Leuciscus cephalus). Parasitology Research 84, 573577.CrossRefGoogle Scholar
SURES, B. (2001). The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems, a review. Aquatic Ecology 35, 245255.CrossRefGoogle Scholar
SURES, B. (2002). Competition for minerals between Acanthocephalus lucii and its definitive host perch (Perca fluviatilis). International Journal for Parasitology 32, 11171122.CrossRefGoogle Scholar
SURES, B. (2003). Accumulation of heavy metals by intestinal helminths in fish: facts, appraisal and perspectives. Parasitology (in press).CrossRefGoogle Scholar
SURES, B. & SIDDALL, R. (1999). Pomphorhynchus laevis, the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Experimental Parasitology 93, 6672.CrossRefGoogle Scholar
SURES, B. & SIDDALL, R. (2001). Comparison between lead accumulation of Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) and in the body cavity of goldfish (Carassius auratus auratus). International Journal for Parasitology 31, 669673.CrossRefGoogle Scholar
SURES, B. & SIDDALL, R. (2003). Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. International Journal for Parasitology 33, 6570.CrossRefGoogle Scholar
SURES, B., SIDDALL, R. & TARASCHEWSKI, H. (1999). Parasites as accumulation indicators of heavy metal pollution. Parasitology Today 15, 1621.CrossRefGoogle Scholar
SURES, B., STEINER, W., RYDLO, M. & TARASCHEWSKI, H. (1999). Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpin lake Mondsee (Austria). Environmental Toxicology and Chemistry 18, 25742579.CrossRefGoogle Scholar
SURES, B. & STREIT, B. (2001). Eel parasite diversity and intermediate host abundance in the River Rhine, Germany. Parasitology 123, 185191.CrossRefGoogle Scholar
SURES, B. & TARASCHEWSKI, H. (1995). Cadmium concentrations in two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitology Research 81, 494497.Google Scholar
SURES, B., TARASCHEWSKI, H. & JACKWERTH, E. (1994 a). Lead accumulation in Pomphorhynchus laevis and its host. Journal of Parasitology 80, 355357.Google Scholar
SURES, B., TARASCHEWSKI, H. & JACKWERTH, E. (1994 b). Lead content of Paratenuisentis ambiguus (Acanthocephala), Anguillicola crassus (Nematodes) and their host Anguilla anguilla. Diseases of aquatic Organisms 19, 105107.Google Scholar
SURES, B., TARASCHEWSKI, H. & JACKWERTH, E. (1994 c). Comparative study of lead accumulation in different organs of perch (Perca fluviatilis) and its intestinal parasite Acanthocephalus lucii. Bulletin of Environmental Contamination and Toxicology 52, 269273.Google Scholar
SURES, B., TARASCHEWSKI, H. & ROKICKI, J. (1997). Lead and cadmium content of two cestodes, Monobothrium wageneri and Bothriocephalus scorpii, and their fish hosts. Parasitology Research 83, 618623.CrossRefGoogle Scholar
SURES, B., TARASCHEWSKI, H. & RYDLO, M. (1997). Intestinal fish parasites as heavy metal bioindicators. A comparison between Acanthocephalus lucii (Palaeacanthocephala) and the Zebra Mussel, Dreissena polymorpha. Bulletin of Environmental Contamination and Toxicology 59, 1421.Google Scholar
SURES, B., TARASCHEWSKI, H. & SIDDALL, R. (1997). Heavy metal concentrations in adult acanthocephalans and cestodes compared to their fish hosts and to established free-living bioindicators. Parassitologia 39, 213218.Google Scholar
VALTONEN, E. T., HOLMES, J. C. & KOSKIVAARA, M. (1997). Eutrophication, pollution, and fragmentation: effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Sciences 54, 572585.CrossRefGoogle Scholar
WASSERWIRTSCHAFTSKATASTER/UMWELTBUNDESAMT (2001). Wassergüte in Österreich – Jahresbericht 2000. Bundesministerium für Land–und Forstwirtschaft, Umwelt und Wasserwirtschaft/Umweltbundesamt (ed.), Wien.
YEOMANS, W. E., CHUBB, J. C. & SWEETING, R. A. (1997). Use of protozoan communities for pollution monitoring. Parassitologia 39, 201212.Google Scholar
ZANDER, C. D. & KESTING, V. (1996). The indicator properties of parasite communities of gobies (Teleostei, Gobiidae) from Kiel and Lübeck Bight, SW Baltic Sea. Applied Parasitology 37, 186204.Google Scholar
ZHARIKOVA, T. I. (1993). Effect of water pollution on ectoparasites of beam (Abramis brama). Journal of Ichthyology 33, 5062.Google Scholar
ZIMMERMANN, S., SURES, B. & TARASCHEWSKI, H. (1999 a). Schwermetallanreicherung bei parasitischen Würmern in Abhängigkeit von verschiedenen Umweltfaktoren – ein Beitrag zum Einsatz von Endoparasiten als Bioindikatoren für den aquatischen Lebensraum. In Ökotoxikologie – ökosystemare Ansätze und Methoden (ed. Oehlmann, J. & Markert, B.), pp. 335340. Ecomed Verlag, Jena.
ZIMMERMANN, S., SURES, B. & TARASCHEWSKI, H. (1999 b). Experimental studies on lead accumulation in the eel specific parasites Anguillicola crassus (Nematoda) and Paratenuisentis ambiguus (Acanthocephala) as compared with their host Anguilla anguilla. Archives of Environmental Contamination and Toxicology 37, 190195.Google Scholar