Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T20:33:58.287Z Has data issue: false hasContentIssue false

GABA in the nervous system of parasitic flatworms

Published online by Cambridge University Press:  06 April 2009

K. S. Eriksson
Affiliation:
Department of Biology, Åbo Akademi University, BioCity, FIN-20520 Åbo, Finland
A. G. Maule
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University, Belfast BT7 1NN, UK
D. W. Halton
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University, Belfast BT7 1NN, UK
P. A. J. Panula
Affiliation:
Department of Biology, Åbo Akademi University, BioCity, FIN-20520 Åbo, Finland
C. Shaw
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University, Belfast BT7 1NN, UK

Summary

In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, γ-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean ± S.D.) in M. expansa anterior region was 124·8 ± 15·3 picomole/mg wet weight, while in F. hepatica it was 16·8 ± 4·9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Airaksinen, M. S., Alanen, S., Szabat, E., Visser, T. J. & Panula, P. (1992). Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse and guinea pig. Journal of Comparative Neurology 323, 103–16.CrossRefGoogle ScholarPubMed
Barrett, J. (1981). Biochemistry of Parasitic Helminths. London and Basingstoke: Macmillan Publishers.Google Scholar
Bokisch, A. J. & Walker, R. J. (1986). The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail Helix aspersa. Comparative Biochemistry and Physiology 84C, 231–42.Google Scholar
Coons, A. H. (1958). Fluorescent antibody methods. In General Cytochemical Methods (ed. Danielli, J. F.), pp. 399442. New York: Academic Press.Google Scholar
Curry, W. J., Shaw, C., Johnston, C. F., Thim, L. & Buchanan, K. D. (1992). Neuropeptide F: primary structure from the turbellarian, Arthioposthia triangulata. Comparative Biochemistry and Physiology 101C, 269–74.Google ScholarPubMed
Eriksson, K., Gustafsson, M. K. S. & Åkerlind, G. (1993). HPLC analysis of monoamines in the cestode Diphyllobothrium dendriticum. Parasitology Research 79, 699702.Google Scholar
Eriksson, K. S. & Panula, P. (1994). Gamma-amino-butyric acid in the nervous system of a planarian. Journal of Comparative Neurology 345, 528–36.CrossRefGoogle Scholar
Eriksson, K., Panula, P. & Reuter, M. (1994). GABA in the nervous system of the planarian Polycelis nigra. Hydrobiologia (in the Press.)Google Scholar
Fairweather, I., Maule, A. G., Mitchell, S. H., Johnston, C. F. & Halton, D. W. (1987). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 73, 255–8.Google Scholar
Gustafsson, M. K. S. & Reuter, M. (1992). The map of neuronal signal substances in flatworms. In Nervous Systems. Principles of Design and Function (ed. Singh, R. N.), pp. 165188. New Delhi: Wiley Eastern Limited.Google Scholar
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.Google Scholar
Holden-Dye, L., Krogsgaard-Larsen, P., Nielsen, L. & Walker, R. J. (1989). GABA receptors on the somatic muscle cells of the parasitic nematode Ascaris suum: stereoselectivity indicates similarity to a GABA-A-type agonist recognition site. British Journal of Pharmacology 98, 841–50.Google Scholar
Homberg, U., Bleick, A. & Rathmayer, W. (1993). Immunocytochemistry of GABA and glutamic acid decarboxylase in the thoracic ganglion of the crab Eriphia spinifrons. Cell and Tissue Research 271, 279–88.CrossRefGoogle Scholar
Karhunen, T., Airaksinen, M. S., Tuomisto, L. & Panula, P. (1993). Neurotransmitters in the nervous system of Macoma balthica (Bivalvia). Journal of Comparative Neurology 334, 477–88.Google Scholar
Keenan, C. L. & Koopowitz, H. (1982). Physiology and in situ identification of putative aminergic neurotransmitters in the nervous system of Gyrocotyle fimbriata, a parasitic flatworm. Journal of Neurobiology 13, 921.Google Scholar
Keenan, L., Koopowitz, H. & Bernardo, K. (1979). Primitive nervous systems. Action of aminergic drugs and blocking agents on activity in the ventral nerve cord of the flatworm Notoplana acticola. Journal of Neurobiology 10, 397408.CrossRefGoogle ScholarPubMed
Lawrence, L. J. & Cassida, J. E. (1983). Stercospecific action of pyrethroid insecticides on the γ-aminobutyric acid receptor-ionophore complex. Science 221, 1399–401.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1979). Chemotherapy of parasitic worms: new biochemical strategies. Science 205, 462–9.Google Scholar
Martin, R. J. (1982). Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. British Journal of Pharmacology 77, 255–65.CrossRefGoogle ScholarPubMed
Martin, R. J. (1993). Neuromuscular transmission in nematode parasites and antinematodal drug action. Pharmacology and Therapeutics 58, 1350.Google Scholar
Maule, A. G., Halton, D. W., Allen, J. M. & Fairweather, I. (1989). Studies on motility in vitro of an ectoparasitic monogenean, Diclidophora merlangi. Parasitology 98, 8593.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Curry, W. J. & Thim, L. (1994). RYIRFamide – A turbellarian FMRFamide-Related Peptide (FaRP). Regulatory Peptides 50, 3743.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W. & Thim, L. (1993). GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–60.CrossRefGoogle ScholarPubMed
McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, London 364, 337–41.Google Scholar
Nilsson, G. E. & Winberg, S. (1993). Changes in brain levels of GABA and related amino acids in anoxic shore crab (Carcinus maenas). American Journal of Physiology 264, R733–R737.Google Scholar
Panula, P., Yang, H.-Y. T. & Costa, E. (1984). Histamine-containing neurons in the rat hypothalamus. Proceedings of the National Academy of Sciences, USA 81, 2572–6.Google Scholar
Pax, R. A., Siefker, C. & Bennett, J. L. (1984). Schistosoma mansoni: differences in acetylcholine, dopamine, and serotonin control of circular and longitudinal parasitic muscles. Experimental Parasitology 58, 314–24.Google Scholar
Roberts, E., Chase, T. N. & Tower, D. B. (1976). GABA in the Nervous System Function, Vol. 5. New York: Raven Press.Google Scholar
Schwartz, J. H. (1991). Chemical messengers: small molecules and peptides. In Principles of Neural Science, 3rd Edn (ed. Kandel, E. R., Schwartz, J. H. & Jessell, T. M.), pp. 213224. New York: Elsevier.Google Scholar
Semeyn, D. R., Pax, R. A. & Bennett, J. L. (1982). Surface electrical activity from Schistosoma mansoni: a sensitive measure of drug action. Journal of Parasitology 68, 353–62.CrossRefGoogle ScholarPubMed
Solis-Soto, J. M. & Brink, M. D. (1994). Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharzia ocellata and Schistosoma mansoni. Parasitology 108, 301–11.Google Scholar
Sukhdeo, M. V. K., Hsu, S. C., Thompson, C. S. & Mettrick, D. F. (1984). Hymenolepis diminuta: behavioral effects of 5-hydroxytryptamine, acetylcholine, histamine and somatostatin. Journal of Parasitology 70, 682–8.Google Scholar
Szabat, E., Soinila, S., Häppölä, O., Linnala, A. & Virtanen, I. (1992). A new monoclonal antibody against the GABA-protein conjugate shows immunoreactivity in sensory neurons of the rat. Neuroscience 47, 409–20.Google Scholar
Tamura, H., Hicks, T. P., Hata, Y., Tsumoto, T. & Yamatodani, A. (1990). Release of glutamate and aspartate from the visual cortex of the cat following activation of afferent pathways. Experimental Brain Research 80, 447–55.Google Scholar
Thompson, C. S. & Mettrick, D. F. (1989). The effects of 5-hydroxytryptamine and glutamate on muscle contraction in Hymenolepis diminuta (Cestoda). Canadian Journal of Zoology 67, 1257–62.Google Scholar
Walker, R. J. & Holden-Dye, L. (1991). Evolutionary aspects of transmitter molecules, their receptors and channels. Parasitology 102 (Suppl.), S7–S29.Google Scholar
Ward, S. M., Allen, J. M. & McKerr, G. (1986). Neuromuscular physiology of Grillotia erinaceus metacestoides (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 121–32.Google Scholar
Watson, A. D. H. (1986). The distribution of GABA-like immunoreactivity in the thoracic nervous system of the locust Schistocerca gregaria. Cell and Tissue Research 246, 331–41.CrossRefGoogle Scholar
Webb, R. A. & Eklove, H. (1989). Demonstration of intense glutamate-like immunoreactivity in the longitudinal nerve cords of the cestode Hymenolepis diminuta. Parasitology Research 75, 545–8.Google Scholar
Yarowsky, P. J. & Carpenter, D. O. (1978). Receptors for gamma-aminobutyric acid on Aplysia neurons. Brain Research 144, 7594.Google Scholar