Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T21:20:25.103Z Has data issue: false hasContentIssue false

Gametocyte sex ratios as indirect measures of outcrossing rates in malaria

Published online by Cambridge University Press:  06 April 2009

A. F. Read
Affiliation:
Zoology Department, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.
A. Narara
Affiliation:
Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea
S. Nee
Affiliation:
AFRC Unit of Ecology and Behaviour, Zoology Department, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.
A. E. Keymer
Affiliation:
Zoology Department, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.
K. P. Day
Affiliation:
Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia

Extract

The frequency of recombination between unlike genotypes is central to understanding the generation of genetic diversity in natural populations of malaria. Here we suggest a way of investigating the problem which could complement conventional biochemical approaches to the population genetics of malaria. Sex allocation theory is one of the most successful areas of evolutionary biology. A well-supported prediction is that progressively less female-biased sex ratios are favoured with more outcrossing; equal numbers of males and females being evolutionarily stable in randomly mating outbred populations. We present a simple game theory model to support the idea that outcrossing rates in malaria will be correlated with the sex ratio of gametocytes in the peripheral blood of vertebrate hosts. Blood films from epidemiological surveys and culture-adapted isolates from Madang Province, Papua New Guinea, were used to estimate average gametocyte sex ratio of Plasmodium falciparum in the area. The geometric mean proportion of males in the population was 0.18 (95% confidence limits: 0.15–0.22). From our model, we estimate that, on average, 36% of zygotes are the result of outcrossing. This estimate assumes that most microgametes released following exflagellation are capable of fertilization. If, on average, fewer than about 70% of microgametes are capable of fertilization (as is the case in at least one other species of Plasmodium), the observed sex ratio would be consistent with between zero and 36% of zygotes being the result of outcrossing. These estimates suggest that there is usually a numerically dominant genotype in the gametocyte population in a blood meal, and that a considerable amount of selfing is occurring in P. falciparum populations in the Madang region, even though it is an area of intense year-round transmission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beale, G. H. & Walliker, D. (1988). Genetics of malaria parasites. In Malaria. Principles and Practice of Malariology (ed. Wernsdorfer, W. H. & McGregor, I.), pp. 379393. Edinburgh: Churchill Livingstone.Google Scholar
Boudin, C., Lyannaz, J., Bosseno, M. F., Chaize, J. & Carnevale, P. (1989). Production de sporozoites de Plasmodium humains à Bobo-Dioulasso (Burkina Faso). Annales de la Société belge de médecine tropicale 69, 323.Google ScholarPubMed
Bruce, M. C., Alano, P. & Carter, R. (1990). Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100, 191200.CrossRefGoogle ScholarPubMed
Bulmer, M. (1986). Sex ratios in geographically structured populations. Trends in Ecology and Evolution 1, 35–8.CrossRefGoogle ScholarPubMed
Bulmer, M. & Taylor, P. D. (1980). Sex ratio under the haystack model. Journal of Theoretical Biology 86, 83–9.CrossRefGoogle ScholarPubMed
Burkot, T., Williams, J. L. & Schneider, I. (1984). Infectivity to mosquitos of Plasmodium falciparum clones grown in vitro from the same isolate. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 339–41.CrossRefGoogle ScholarPubMed
Carter, R. & Graves, P. M. (1988). Gametocytes. In Malaria. Principles and Practice of Malariology (ed. Wernsdorfer, W. H. & McGregor, I.), pp. 253305. Edinburgh: Churchill Livingstone.Google Scholar
Cattani, J. A., Tulloch, J. L., Vrbova, H., Jolley, D., Gibson, F. D., Moir, J. S., Heywood, P. F., Alpers, M. P., Stevenson, A. & Clancy, R. (1986). The epidemiology of malaria in a population surrounding Madang, Papua New Guinea. American Journal of Tropical Medicine and Hygiene 35, 315.CrossRefGoogle Scholar
Charnov, E. L. (1982). The Theory of Sex Allocation. Princeton: Princeton University Press.Google ScholarPubMed
Conway, D. J., Greenwood, B. M. & Mcbride, J. S. (1991). The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology 103, 16.CrossRefGoogle ScholarPubMed
Day, K. P., Koella, J. C., Nee, S., Gupta, S. & Read, A. F. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104, S35–S52.CrossRefGoogle ScholarPubMed
Dye, C., Davies, C. R. & Lines, J. (1990). When are parasites clonal? Nature, London 348, 120.CrossRefGoogle Scholar
Dye, C. (1991). Population genetics of nonclonal, nonrandomly mating malaria parasites. Parasitology Today 7, 236–40.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Philip, G., Smith, T., Kum, E., Southwell, B. & Brown, G. (1989). Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. American Journal of Tropical Medicine and Hygiene 41, 259–65.CrossRefGoogle ScholarPubMed
Frank, S. A. (1990). Sex allocation theory for birds and mammals. Annual Review of Ecology and Systematics 21, 1355.CrossRefGoogle Scholar
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific.Google Scholar
Ghiselin, M. T. (1974). The Economy of Nature and the Evolution of Sex. Berkeley, California: University of California Press.Google Scholar
Graves, P. M., Carter, R. & Mcneill, K. M. (1984). Gametocyte production in cloned lines of Plasmodium falciparum.American Journal of Tropical Medicine and Hygiene 33, 1045–50.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1967). Extraordinary sex ratios. Science 156, 477–88.CrossRefGoogle ScholarPubMed
Harvey, P. H. (1985). Intrademic group selection and the sex ratio. In Behavioural Ecology. Ecological Consequences of Adaptive Behaviour (ed. Sibly, R. M. & Smith, R. H.), pp. 5973. Oxford: Blackwell Scientific.Google Scholar
Inselberg, J. (1983). Gametocyte formation by the progeny of single Plasmodium falciparum schizonts. Journal of Parasitology 69, 584–91.CrossRefGoogle Scholar
Kemp, D. J., Cowman, A. F. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum.Advances in Parasitology 29, 75149.CrossRefGoogle ScholarPubMed
Lessells, C. M. & Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. The Auk 104, 116–21.CrossRefGoogle Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
MaynardSMITH, J. SMITH, J. (1989). Evolutionary Genetics. Oxford: Oxford University Press.Google Scholar
Pickering, J. (1980). Sex ratio, social behaviour and ecology in Polistes (Hymenoptera, Vespidae), Pachysomoides (Hymenoptera, Ichneumonidae) and Plasmodium (Protozoa, Haemosporidia). Ph.D. thesis, Harvard University.Google Scholar
Ponnudurai, T., Meuwissen, J. H. E.T.Leeuwenberg, A. D. Leeuwenberg, A. D.E., M., Verhave, J. P. & Lensen, A. H. W. (1982). The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitos. Transactiosn of the Royal Society of Tropical Medicine and Hygiene 76, 242–50.CrossRefGoogle Scholar
Rosario, V. (1981). Cloning of naturally occurring mixed infections of malaria parasites. Science 212, 1037–8.CrossRefGoogle ScholarPubMed
Schall, J. J. (1989). The sex ratio of Plasmodium gametocytes. Parasitology 98, 343–50.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1975). Microgametogenesis in Plasmodium yoelii nigeriensis: a scanning electron microscope investigation. Protistologica 11, 263–8.Google Scholar
Sinden, R. E. (1983). Sexual development of malarial parasites. Advances in Parasitology 22, 153216.CrossRefGoogle ScholarPubMed
Smalley, M. E. & Sinden, R. E. (1977). Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology 74, 18.CrossRefGoogle ScholarPubMed
Taylor, P. D. (1989). Inclusive fitness models with two sexes. Theoretical Population Biology 34, 145–67.CrossRefGoogle Scholar
Thaithong, S., Beale, G. H., Fenton, B., Mcbride, J. S., Rosario, V., Walker, A. & Walliker, D. (1984). Clonal diversity in a single isolate of the malaria parasite Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 242–5.CrossRefGoogle Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomic consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1991). Clonal defense. Nature, London 350, 385–6.CrossRefGoogle Scholar
Trager, W., Tershakovec, M., Lyandvert, L., Stanley, H., Lanners, N. & Gubert, E. (1981). Clones of the malaria parasite Plasmodium falciparum obtained by microscopic selection: their characterisation with regard to knobs, chloroquine sensitivity, and formation of gametocytes. Proceedings of the National Academy of Sciences, USA 78, 6527–30.CrossRefGoogle ScholarPubMed
Trivers, R. (1985). Social Evolution. Menlo Park, CA: Benjamin/Cummings.Google Scholar
Walliker, D., Beale, G. & Luzzatto, L. (1990). When are parasites clonal? Nature, London 348, 120.CrossRefGoogle Scholar
Wang, A. L. & Wang, C. C. (1991). Viruses of parasitic protozoa. Parasitology Today 7, 7680.CrossRefGoogle ScholarPubMed
Werren, J. H., Nur, U. & Wu, C.-I. (1988). Selfish genetic elements. Trends in Ecology and Evolution 3, 297302.CrossRefGoogle ScholarPubMed