Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T11:39:09.517Z Has data issue: false hasContentIssue false

Genetic structure of Trypanosoma cruzi populations from Argentina estimated from enzyme polymorphism

Published online by Cambridge University Press:  06 April 2009

G. M. De Luca D'oro
Affiliation:
Cátedra de Química Biológica, Facultad de Ciencias Médicas, Universidad National de Córdoba, C.C.35, Suc.16, 5016 Córdoba, Argentina
C. N. Gardenal
Affiliation:
Cátedra de Química Biológica, Facultad de Ciencias Médicas, Universidad National de Córdoba, C.C.35, Suc.16, 5016 Córdoba, Argentina
B. Perret
Affiliation:
Cátedra de Química Biológica, Facultad de Ciencias Médicas, Universidad National de Córdoba, C.C.35, Suc.16, 5016 Córdoba, Argentina
J. V. Crisci
Affiliation:
Laboratorio de Sistemática y Biología Evolutiva (LASBE), Museo de La Plata, 1900 La Plata, Argentina
E. E. Montamat
Affiliation:
Cátedra de Química Biológica, Facultad de Ciencias Médicas, Universidad National de Córdoba, C.C.35, Suc.16, 5016 Córdoba, Argentina

Summary

Isolates of Trypanosoma cruzi from human patients, domestic and sylvatic animals and vector insects were obtained in different areas of Argentina. Electrophoretic patterns of enzymes from extracts of 95 isolates were analysed. On the basis of zymograms providing information on 10 loci, 12 zymodemes are described according to their genotypes. Data presented show fixed heterozygosity, absence of segregation of genotypes, significant departures from Hardy–Weinberg equilibrium, and over-represented genotypes. This evidence supports the hypothesis that sexual reproduction is very restricted or absent in this parasite. The proportion of polymorphic loci is 80%. The expected mean heterozygosity per locus (He) is 0·43, while the observed value (Ho) is 0·24. Differences between these values may be explained by accepting a basically clonal structure for T. cruzi. The data matrix of 12 zymodemes using 28 characters was analysed using a Wagner parsimony algorithm. Two equally most parsimonious unrooted trees were generated; both have 39 steps. The results show clusters clearly separated according to the geographical origin of the stocks. There are some indications of some correlations between genetic composition of the parasite and the clinical picture of the infection in human patients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chapman, M. D., Caffery, A., Miles, M. A. & Swalow, D. M. (1984). Enzyme subunit numbers in T. cruzi zymodemes. Annals of Tropical Medicine and Hygiene 78, 541–2.Google Scholar
Farris, J. S. (1970). Methods for computing Wagner trees. Systematic Zoology 19, 8392.CrossRefGoogle Scholar
Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. The American Naturalist 106, 645–68.CrossRefGoogle Scholar
Farris, J. S. (1981). Distance data in phylogenetic analysis. In Advances in Cladistics: Proceedings of the First Meeting of the Willi Hennig Society (ed. Funk, V. A. & Brooks, D. R.), pp. 323. New York: New York Botanical Garden.Google Scholar
Farris, J. S. (1988). HENNIG86 Reference: Version 1.5. Port Jefferson, New York: Published by the author.Google Scholar
Jeremiah, S. J., Povey, S. & Miles, M. A. (1982). Molecular size of enzymes in T. cruzi considered in relationship to the genetic interpretation of isozyme patterns. Molecular and Biochemical Parasitology 6, 297302.CrossRefGoogle Scholar
Kluge, A. G. & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology 18, 132.CrossRefGoogle Scholar
Macina, R., Arauzo, S., Reyes, M., Sanchez, D., Basonbrio, M. A., Montamat, E. E., Solari, A. & Frasch, A. D. (1987). T. cruzi isolates from Argentina and Chile grouped with the aid of DNA probes. Molecular and Biochemical Parasitology 25, 4553.CrossRefGoogle ScholarPubMed
Miles, M. A. (1983). The epidemiology of South American trypanosomiasis – biochemical and immunological approaches and their relevance to control. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 523.CrossRefGoogle ScholarPubMed
Miles, M. A., Lanham, S. M., De Souza, A. A. & Adn Povoa, M. (1980). Further enzymic characters of T. cruzi and their evaluation for strain identification. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 221–37.CrossRefGoogle Scholar
Montamat, E. E., Arauzo, S., Cazzulo, J. J. & Subias, E. (1987). Characterization by electrophoretic zymograms of 19 Trypanosoma cruzi clones derived from two chagasic patients. Comparative Biochemistry and Physiology 87B, 417–22.Google Scholar
Montamat, E. E., De Luca D'oro, G., Perret, B. & Rivas, C. (1992). Characterization of T. cruzi from Argentina by electrophoretic zymograms. Acta Tropica 50, 125–33. Corrigendum: 1992. Acta Tropica 51, 173.CrossRefGoogle Scholar
Solari, A., Munoz, S., Venegas, J., Wallace, A., Aguilera, X., Apt., W., Breniere, S. F. & Tibayrenc, M. (1992). Characterization of Chilean, Bolivian and Argentinian Trypanosoma cruzi populations by restriction endonuclease and isoenzyme analysis. Experimental Parasitology 75, 187–95.CrossRefGoogle ScholarPubMed
Tibayrenc, M. & Ayala, F. J. (1988). Isozyme variability in T. cruzi, the agent of Chagas disease: genetical, taxonomical and epidemiological significance. Evolution 42, 277–92.Google Scholar
Tibayrenc, M., Kjellberg, M. J. & Ayala, F. J. (1990). A clonal theory of parasite protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle ScholarPubMed
Walter, R. D. & Ebert, F. (1979). Evidence for NADH and NADH-linked glutamate dehydrogenase in T. cruzi epimastigotes. Journal of Protozoology 26, 653–6.CrossRefGoogle Scholar