Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:51:32.496Z Has data issue: false hasContentIssue false

Genetic variability of natural populations of trematodes of the genus Lecithochirium parasites of eels

Published online by Cambridge University Press:  06 August 2004

R. VILAS
Affiliation:
Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). Av. Vigo s/n, 15782 Santiago de Compostela, Spain
M. L. SANMARTÍN
Affiliation:
Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
E. PANIAGUA
Affiliation:
Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). Av. Vigo s/n, 15782 Santiago de Compostela, Spain

Abstract

Allozyme variation within and among populations of 3 species of the genus Lecithochirium (Trematoda: Hemiuridae) was studied by starch gel electrophoresis. In total, 19 loci were analysed in 7 populations. The level of genetic variability was relatively high in all populations. The percentage of polymorphic loci (0·95 criterion) observed per population varied from 21·0% to 55·5%, and expected heterozygosity levels varied from 0·082 to 0·197. All populations showed significant heterozygote deficiencies. In Lecithochirium fusiforme most of the deviations from Hardy–Weinberg proportions were within the populations and this species showed moderate population structuring (FIS=0·486, FST=0·142, Nm=1·51) and accordingly low intraspecific genetic distances (D=0·003 to 0·027). A significant lack of heterozygotes for several polymorphic loci was revealed in Lecithochirium rufoviride and Lecithochirium musculus. The most probable cause of the population genetic subdivision in L. rufoviride is the presence of at least 1 cryptic species in the populations studied. Although the lowest percentage of fixed genetic differences was that between L. fusiforme and L. musculus, two different algorithms for the construction of evolutionary trees on a matrix of genetic distances confirmed that L. fusiforme and L. rufoviride are phenetically the most closely related species.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSON, T. J. C., BLOUIN, M. S. & BEECH, R. N. ( 1998). Population biology of parasitic nematodes: applications of genetic markers. Advances in Parasitology 41, 220283.CrossRefGoogle Scholar
BLOUIN, M. S., LIU, J. & BERRY, R. E. ( 1999). Life cycle variation and the genetic structure of nematode populations. Heredity 83, 253259.CrossRefGoogle Scholar
BLOUIN, M. S., YOWELL, C. A., COURTNEY, C. H. & DAME, J. B. ( 1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.Google Scholar
CRISCIONE, C. D. & BLOUIN, M. S. ( 2004). Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution (in the Press).CrossRefGoogle Scholar
CURTIS, J., SORENSEN, R. E. & MINCHELLA, D. J. ( 2002). Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125, S51S59.CrossRefGoogle Scholar
DYBDAHL, M. F. & LIVELY, C. M. ( 1996). The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evolution 50, 22642275.CrossRefGoogle Scholar
DYNES, C., FLEMMING, C. C. & MURCHIE, A. K. ( 2001). Genetic variation in native and introduced populations of the ‘New Zealand flatworm’, Arthurdendyus triangulatus. Annals of Applied Biology 139, 165174.CrossRefGoogle Scholar
FOLKERTSMA, R. T., VAN KOERT, P., ROUPPE VAN DER VOORT, J. N. A. M., DE GROOT, K. E., KAMMENGA, J. E., HELDER, J. & BAKKER, J. ( 2001). The effects of founding events and agricultural practices on the genetic structure of three metapopulations of Globodera pallida. Phytopathology 91, 753758.CrossRefGoogle Scholar
GIBSON, D. I. & BRAY, R. A. ( 1979). The Hemiuroidea: terminology, systematics and evolution. Bulletin of the British Museum (Natural History) Zoology Series 36, 35146.CrossRefGoogle Scholar
GIBSON, D. I. & BRAY, R. A. ( 1986). The Hemiuridae (Digenea) of fishes from the north-east Atlantic. Bulletin of the British Museum (Natural History), Zoology Series 51, 1125.Google Scholar
GUO, S. W. & THOMPSON, E. A. ( 1992). Performing the exact test for Hardy–Weinberg proportions for multiple alleles. Biometrics 48, 361362.CrossRefGoogle Scholar
HERBERT, P. D. N. & PAYNE, W. J. ( 1985). Genetic variation in populations of the hermaphroditic flatworm Mesostoma lingua (Turbelaria: Rhabdocoela). Biology Bulletin 169, 143151.CrossRefGoogle Scholar
HU, M., HÖGLUND, J., CHILTON, N. B., ZHU, X. & GASSER, R. B. ( 2002). Mutation scanning analysis of mitochondrial cytochrome c oxidase subunit 1 reveals limited gene flow among bovine lungworm subpopulations in Sweden. Electrophoresis 23, 33573363.3.0.CO;2-B>CrossRefGoogle Scholar
JARNE, P. & THÉRON, A. ( 2001). Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology 123 (Suppl.), S27S40.CrossRefGoogle Scholar
KARL, S. A. & AVISE, J. C. ( 1992). Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256, 100102.CrossRefGoogle Scholar
LYDEARD, C., MULVEY, M., AHO, J. M. & KENNEDY, P. K. ( 1989). Genetic variability among natural populations of the liver fluke Fascioloides magna in the white-tailed deer, Odocoileus virginianus. Canadian Journal of Zoology 67, 20212025.CrossRefGoogle Scholar
MARGOLIS, L., ESCH, G. W., HOLMES, J. C., KURIS, A. M. & SCHAD, G. A. ( 1982). The use of ecological terms in parasitology. Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
McCOY, K. D., BOULINIER, T., TIRARD, C. & MICHALAKIS, Y. ( 2003). Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57, 288296.CrossRefGoogle Scholar
MICHENER, C. D. & SOKAL, R. R. ( 1957). A quantitative approach to a problem in classification. Evolution 11, 130162.CrossRefGoogle Scholar
MULVEY, M., AHO, J. M., LYDEARD, C., LEBERG, P. L. & SMITH, M. H. ( 1991). Comparative population genetic structure of a parasite (Fascioloides magna) and its definitive host. Evolution 45, 16281640.Google Scholar
NADLER, S. ( 1995). Microevolution and the genetic structure of parasite populations. Journal of Parasitology 81, 395403.CrossRefGoogle Scholar
OTA, T. ( 1993). DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University, University Park, Pennsylvania, USA.
PENG, W., ANDERSON, T. J. C., ZHOU, X. & KENNEDY, M. W. ( 1998). Genetic variation in sympatric Ascaris populations from humans and pigs in China. Parasitology 117, 355361.CrossRefGoogle Scholar
PLANTARD, O. & PORTE, C. ( 2004). Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology 13, 3341.CrossRefGoogle Scholar
POGSON, G. H., MESA, K. A. & BOUTILIER, R. G. ( 1995). Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139, 375385.Google Scholar
PONGRATZ, N., GERACE, L. & MICHIELS, N. K. ( 2002). Genetic differentiation within and between populations of a hermaphroditic freshwater planarian. Heredity 89, 6469.CrossRefGoogle Scholar
PRICE, P. W. ( 1980). Evolutionary Biology of Parasites. Princeton University Press, Princeton, New Jersey, USA.
PRUGNOLLE, F., DURAND, P., THÉRON, A., CHEVILLON, C. & DE MEEUS, T. ( 2003). Sex-specific genetic structure: new trends for dioecious parasites. Trends in Parasitology 19, 171174.CrossRefGoogle Scholar
RAYMOND, M. & ROUSSET, F. ( 1995). Population genetics software for exact test and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
SAITOU, N. & NEI, M. ( 1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
SIRE, C., LANGAND, J., BARRAL, V. & THÉRON, A. ( 2001). Parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) genetic diversity: population structure in a fragmented landscape. Parasitology 122, 545554.CrossRefGoogle Scholar
SLATKIN, M. ( 1987). Gene flow and the geographic structure of natural populations. Science 236, 787792.CrossRefGoogle Scholar
SLATKIN, M. ( 1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264279.CrossRefGoogle Scholar
VILAS, R., PANIAGUA, E., SANTAMARINA, M. T., SANMARTÍN, M. L. & UBEIRA, F. M. ( 2001). Unusual electrophoretic patterns for phosphoglucomutase and fumarase in a population of Lecithochirium rufoviride (Trematoda: Hemiuridae), a parasite of Conger conger. Journal of Parasitology 87, 709711.CrossRefGoogle Scholar
VILAS, R., PANIAGUA, E. & SANMARTÍN, M. L. ( 2002 a). Quaternary structure of enzymes in trematodes of the genus Lecithochirium: inference from allozymic patterns. Acta Parasitologica 47, 323328.Google Scholar
VILAS, R., PANIAGUA, E. & SANMARTÍN, M. L. ( 2002 b). Allozyme markers for the identification of Lecithochirium rufoviride and Lecithochirium furcolabiatum (Trematoda: Hemiuridae), parasites of Conger conger and Anguilla anguilla from Atlantic Spanish waters. Journal of Parasitology 88, 822825.Google Scholar
VILAS, R., PANIAGUA, E., OUTEIRAL, S. & SANMARTÍN, M. L. ( 2002). Electrophoretic and morphological differentiation of three sympatric species of the genus Lecithochirium (Trematoda: Hemiuridae), parasites of marine fishes. Parasitology Research 88, 10551060.Google Scholar
VILAS, R., PANIAGUA, E. & SANMARTÍN, M. L. ( 2003 a). Genetic variation within and among infrapopulations of the marine digenetic trematode Lecithochirium fusiforme. Parasitology 126, 465472.Google Scholar
VILAS, R., PANIAGUA, E. & SANMARTÍN, M. L. ( 2003 b). On the presence of Lecithochirium musculus (Digenea: Hemiuridae) in Conger conger. Folia Parasitologica 50, 154156.Google Scholar
VILAS, R. & PANIAGUA, E. ( 2004). Seasonal occurrence and diversity of Hemiuridae (Trematoda: Digenea) in conger eels (Conger conger) from Spain. Comparative Parasitology (in the Press).CrossRefGoogle Scholar
VILAS, R., SANMARTIN, M. L. & PANIAGUA, E. ( 2004). Temporal allozyme divergence in infrapopulations of the hemiurid fluke Lecithochirium fusiforme. Journal of Parasitology 90, 198201.CrossRefGoogle Scholar
VINEY, M. E. ( 2001). Diversity in populations of parasitic nematodes and its significance. In Parasitic Nematodes. Molecular Biology, Biochemistry and Immunology ( ed. Kennedy, M. W. & Harnett, W. ), pp. 83102. CABI Publishing, New York, USA.CrossRef
WARD, R. D., SKIBINSKI, D. O. F. & WOODWARK, M. ( 1992). Protein heterozygosity, protein structure, and taxonomic differentiation. Evolutionary Biology 26, 73159.CrossRefGoogle Scholar
WEIR, B. S. & COCKERHAM, C. C. ( 1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google Scholar