Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T05:55:58.994Z Has data issue: false hasContentIssue false

Genomic cloning of human Echinococcus granulosus DNA: isolation of recombinant plasmids and their use as genetic markers in strain characterization

Published online by Cambridge University Press:  06 April 2009

A. K. Rishi
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB
D. P. McManus
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB

Summary

A small, size selected (0·5–5·0Kbp) genomic DNA library has been constructed in the bacterial plasmid pAT153 using DNA extracted from a human isolate (Kenyan origin) of the hydatid disease organism, Echinococcus granulosus. A panel of taeniid cestode DNAs has been used in conjunction with hybridization and restriction-enzyme analysis to identify in the library two recombinant plasmids with Echinococcus-specific inserts and a single recombinant plasmid (coded pEG18) with a DNA fragment unique for E. granulosus. These, and other recombinant plasmids with E. granulosus DNA inserts, have been used in restriction endonuclease, Southern transfer and hybridization analysis to independently and repro-ducibly discriminate between the UK horse and sheep strains of E. granulosus; these probes may well prove of value for characterizing isolates from other endemic areas. The feasibility of using a cloned DNA fragment as the basis of a simple field test for distinguishing eggs of E. granulosus from those of other taeniid cestodes is discussed. The recombinant insert (approximately 2·3 Kbp in size) of pEG18 has a low copy number - estimated at approximately 26 - and it may not be sufficiently sensitive for practical use as a DNA probe in the identification of small numbers of E. granulosus eggs by molecular hybridization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D. C., Gibson, L. J., Kennedy, W. P. K., Nasser, A. A. A. A. & Williams, R. H. (1986). The potential of using recombinant DNA species-specific probes for the identification of tropical Leishmania. In Parasites and Molecular Biology: Applications of New Techniques. Symposia of the British Society for Parasitology, vol. 23. Parasitology 91, S13974.CrossRefGoogle Scholar
Barker, R., Suebsang, L., Rooney, W., Alecrim, G. C., Dourado, V. H. V. & Wirth, D. F. (1986). Specific DNA probe for the diagnosis of Plasmodium falciparum malaria. Science 231, 1434–6.CrossRefGoogle ScholarPubMed
Craig, P. S., Macpherson, C. N. L. & Nelson, G. S. (1986). The identification of eggs of Echinococcus by immunofluorescence using a specific anti-oncospheral monoclonal antibody. American Journal of Tropical Medicine and Hygiene 35, 152–8.Google Scholar
Denhardt, D. T. (1966). A membrane-filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23, 641–6.Google Scholar
Franzen, L., Shabo, R., Perlmann, H., Wigzell, H., Westin, G., Aslund, L., Persson, T. & Pettersson, U. (1984). Analysis of clinical specimens by hybridisation with probe containing repetitive DNA from Plasmodium falciparum. Lancet 1, 525–8.Google Scholar
Kennedy, W. P. K. (1984). Novel identification of differences in the kinetoplast DNA of Leishmania isolates by recombinant DNA techniques and in situ hybridisation. Molecular and Biochemical Parasitology 12, 313–25.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning (A Laboratory Manual). New York: Cold Spring Harbour Laboratory Publications.Google Scholar
Massamba, N. & Williams, R. O. (1984). Distinction of African trypanosome species using nucleic acid hybridization. Parasitology 88, 5565.CrossRefGoogle ScholarPubMed
McCutchen, T. F., Simpson, A. J. G., Mullins, J. A., Sher, A., Nash, T. E., Lewis, F. & Richards, C. (1984). Differentiation of schistosomes by species, strain and sex by using cloned DNA markers. Proceedings of the National Academy of Science, USA 81, 889–93.CrossRefGoogle Scholar
McManus, D. P., Knight, M. & Simpson, A. J. G. (1985). Isolation and characterisation of nucleic acids from the hydatid organisms, Echinococcus spp. (Cestoda). Molecular and Biochemical Parasitology 16, 251–66.CrossRefGoogle ScholarPubMed
McManus, D. P. & Macpherson, C. N. L. (1984). Strain characterisation in the hydatid organism, Echinococcus granulosus: current status and new perspectives. Annals of Tropical Medicine and Parasitology 78, 193–8.CrossRefGoogle ScholarPubMed
McManus, D. P. & Simpson, A. J. G. (1985). Identification of the Echinococcus (hydatid disease) organisms using cloned DNA markers. Molecular and Biochemical Parasitology 17, 171–8.CrossRefGoogle ScholarPubMed
McManus, D. P. & Smyth, J. D. (1978). Differences in the chemical composition and carbohydrate metabolism of Echinococcus granulosus (horse and sheep strains) and E. multilocularis. Parasitology 77, 103–9.CrossRefGoogle ScholarPubMed
McManus, D. P. & Smyth, J. D. (1986). Hydatidosis: changing concepts in epidemiology and speciation. Parasitology Today 2, 163–8.CrossRefGoogle ScholarPubMed
McReynolds, L. A., Desimone, S. M. & Williams, S. A. (1986). Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Sciences, USA 83, 797801.CrossRefGoogle ScholarPubMed
Oquendo, P., Goman, M., Mackay, M., Langsley, G., Walliker, D. & Scaife, J. (1986). Characterisation of a repetitive DNA sequence from the malaria parasite, Plasmodium falciparum. Molecular and Biochemical Parasitology 18, 89101.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977). Labelling DNA to high specific activity in vitro by nick translation with DNA polymerase 1. Journal of Molecular Biology 113, 237–51.Google Scholar
Rollinson, D., Walker, T. K. & Simpson, A. J. G. (1986 a). New approaches to schistosome identification. Parasitology Today 2, 24–5.CrossRefGoogle ScholarPubMed
Rollinson, D., Walker, T. K. & Simpson, A. J. G. (1986 b). The application of recombinant DNA technology to problems of helminth identification. In Parasites and Molecular Biology: Applications of New Techniques. Symposia of the British Society for Parasitology. vol. 23. Parasitology 91, S5371.Google Scholar
Searcy, D. G. & Macinnis, A. J. (1970). Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24, 796806.CrossRefGoogle ScholarPubMed
Shah, J., Lamontagne, L., Unnasch, T. R., Wirth, D. F. & Piessens, W. F. (1986). Characterization of a ribosomal DNA clone of Brugia malayi. Molecular and Biochemical Parasitology 19, 6775.Google Scholar
Sim, B. K. L., Piessens, W. F. & Wirth, D. F. (1986). A DXA probe cloned in Escherichia coli for the identification of Brugia malayi. Molecular and Biochemical Parasitology 19, 117–23.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Spithill, T. W. & Grumont, R. J. (1984). Identification of species, strains and clones of Leishmania by characterization of kinetoplast DNA minicircles. Molecular and Biochemical Parasitology 12, 217–36.CrossRefGoogle ScholarPubMed
Swiderski, Z. (1983). Echinococcus granulosus: hook-muscle systems and cellular organisation of infective oncospheres. International Journal for Parasitology 13, 289–99.Google Scholar
Thompson, R. C. A. (1986). Biology and systematics of Echinococcus. In The Biology of Echinococcus and Hydatid Disease (ed. R.C.A., Thompson), pp. 543. Hemel Hempstead: Allen and Unwin.Google Scholar
Wirth, D. F. & McMahon Pratt, D. (1982). Rapid identification of Leishmania species by specific hybridisation of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Sciences, USA 79, 69997003.CrossRefGoogle ScholarPubMed