Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:51:09.622Z Has data issue: false hasContentIssue false

Germ-free mice produce high levels of interferon-gamma in response to infection with Leishmania major but fail to heal lesions

Published online by Cambridge University Press:  28 June 2005

M. R. OLIVEIRA
Affiliation:
Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil Departamento de Biologia Molecular, CCEN, Universidade Federal da Paraíba, Campus I. 58059-900, João Pessoa, PB, Brazil
W. L. TAFURI
Affiliation:
Departamento de Patologia Geral, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil
L. C. C. AFONSO
Affiliation:
Departamento de Ciências Biológicas/NUPEB, ICEB, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil
M. A. P. OLIVEIRA
Affiliation:
Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil current address: Instituto de Patologia Tropical e Saúde Pública/ DMIPP, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
J. R. NICOLI
Affiliation:
Departamento de Microbiologia, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil
E. C. VIEIRA
Affiliation:
Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil
P. SCOTT
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
M. N. MELO
Affiliation:
Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil
L. Q. VIEIRA
Affiliation:
Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, CP486, 30161-970, Belo Horizonte, MG, Brazil

Abstract

In order to investigate the importance of the host microbiota on differentiation of T cell subsets in response to infection, Swiss/NIH germ-free mice and conventional (microbiota-bearing) mice were infected with Leishmania major, and lesion development, parasite loads, and cytokine production were assessed. Germ-free mice failed to heal lesions and presented a higher number of parasites at the site of infection than their conventional counterparts. In addition, histopathological analysis indicated a higher density of parasitized macrophages in lesions from germ-free mice than in conventional mice. The initial production of interleukin (IL)-12 and interferon-gamma (IFN-γ) in germ-free mice was comparable to the conventional controls. Also, germ-free mice produced elevated levels of IFN-γ and lower levels of IL-4 throughout the course of infection, suggesting the development of a Th1 response. Macrophages from germ-free mice exposed to IFN-γ and infected with amastigotes in vitro were not as efficient at killing parasites as macrophages from conventional animals. These observations indicate that the microbiota is not essential for the development of Th1 immune responses, but seems to be important for macrophage activation.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, L. C. and Scott, P. ( 1993). Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infection and Immunity 61, 29522959.Google Scholar
Barral, A., Barral-Netto, M., Yong, E. C., Brownell, C. E., Twardzik, D. R. and Reed, S. G. ( 1993). Transforming growth factor beta as a virulence mechanism for Leishmania braziliensis. Proceedings of the National Academy of Sciences of the United States of America 90, 34423446.CrossRefGoogle Scholar
Belosevic, M., Finbloom, D. S., van der Meide, P. H., Slayter, M. V. and Nacy, C. A. ( 1989). Administration of monoclonal anti-IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. Journal of Immunology 143, 266274.Google Scholar
Berg, R. D. ( 1996). The indigenous gastrointestinal microflora. Trends in Microbiology 4, 430435.CrossRefGoogle Scholar
Dahlgren, U. I., Midtvedt, T. and Tarkowski, A. ( 1995). Transient appearance of circulating interleukin-6 and tumor necrosis factor in germ-free C3H/HeJ and C3H/HeN mice upon intestinal exposure to E. coli. Advances in Experimental Medicine and Biology 371A, 459462.CrossRefGoogle Scholar
Donnelly, K. B., Lima, H. C. and Titus, R. G. ( 1998). Histologic characterization of experimental cutaneous leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. Journal of Parasitology 84, 97103.CrossRefGoogle Scholar
Duarte, R., Silva, A. M., Vieira, L. Q., Afonso, L. C. and Nicoli, J. R. ( 2004). Influence of normal microbiota on some aspects of the immune response during experimental infection with Trypanosoma cruzi in mice. Journal of Medical Microbioogy 53, 741748.CrossRefGoogle Scholar
Filho-Lima, J. V., Vieira, E. C. and Nicoli, J. R. ( 2000). Antagonistic effect of Lactobacillus acidophilus, Saccharomyces boulardii and Escherichia coli combinations against experimental infections with Shigella flexneri and Salmonella enteritidis subsp. typhimurium in gnotobiotic mice. Journal of Applied Microbiology 88, 365370.CrossRefGoogle Scholar
Furarah, A. M., Crocco-Afonso, L. C., Silva, M. E. C., Silva, M. E., Bambirra, E. A., Vieira, E. C. and Nicoli, J. R. ( 1991). Immune responses of germ-free mice to experimental infection with Trypanosoma cruzi. Brazilian Journal of Medical and Biological Research 24, 12231231.Google Scholar
Gazzinelli, R. T., Oswald, I. P., James, S. L. and Sher, A. ( 1992). IL-10 inhibits parasite killing and nitrogen oxide production by IFN-g-activated-macrophages. Journal of Immunology 148, 17921796.Google Scholar
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. ( 1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126, 131138.CrossRefGoogle Scholar
Heinzel, F. P., Rerko, R. M., Hatam, R. and Locksley, R. M. ( 1993). IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. Journal of Immunology 150, 39243931.Google Scholar
Heinzel, F. P., Sadick, M. D., Holaday, B. J., Coffman, R. L. and Locksley, R. M. ( 1989). Reciprocal expression of interferon gamma or IL4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. Journal of Experimental Medicine 169, 5972.Google Scholar
Hodes, R. J. ( 1995). Molecular alterations in the aging immune system. Journal of Experimental Medicine 182, 13.CrossRefGoogle Scholar
Hori, S., Nomura, T. and Sakaguchi, S. ( 2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 10571061.CrossRefGoogle Scholar
Julia, V., McSorley, S. J., Malherbe, L., Breittmayer, J. P., Girard-Pipau, F., Beck, A. and Glaichenhaus, N. ( 2000). Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. Journal of Immunology 165, 56375645.CrossRefGoogle Scholar
Lagrange, P. H., Mackaness, G. B. and Miller, T. E. ( 1974). Influence of dose and route of antigen injection on the immunological induction of T cells. Journal of Experimental Medicine 139, 528542.CrossRefGoogle Scholar
Launois, P., Maillard, I., Pingel, S., Swihart, K. G., Xénarios, I., Acha-Orbea, H., Diggelmann, H., Locksley, R. M., MacDonald, H. R. and Louis, J. A. ( 1997). IL-4 rapidly produced by Vb4Va8 CD4+ cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6, 541549.CrossRefGoogle Scholar
Launois, P., Ohteki, T., Swihart, K., MacDonald, H. R. and Louis, J. A. ( 1995). In susceptible mice, Leishmania major induce very rapid interleukin-4 production by CD4+ T cells which are NK1.1. European Journal of Immunology 25, 32983307.CrossRefGoogle Scholar
Liew, F. Y., Millott, S., Li, Y., Lelchuk, R., Chan, W. L. and Ziltener, H. ( 1989). Macrophage activation by interferon-gamma from host-protective T cells is inhibited by interleukin (IL)3 and IL4 produced by disease-promoting T cells in leishmaniasis. European Journal of Immunology 19, 12271232.CrossRefGoogle Scholar
Lima, H. C., Dekrey, G. K. and Titus, R. G. ( 1999). Resolution of an infection with Leishmania braziliensis confers complete protection to a subsequent challenge with Leishmania major in BALB/c mice. Memorias do Instituto Oswaldo Cruz 94, 7176.CrossRefGoogle Scholar
Locksley, R. M., Heinzel, F. P., Holaday, B. J., Mutha, S. S., Reiner, S. L. and Sadick, M. D. ( 1991). Induction of Th1 and Th2 CD4+ subsets during murine Leishmania major infection. Research in Immunology 142, 2832.CrossRefGoogle Scholar
MacDonald, T. T. and Carter, P. B. ( 1979). Requirement for a bacterial flora before mice generate cells capable of mediating the delayed hypersensitivity reaction to sheep red blood cells. Journal of Immunology 122, 26242629.Google Scholar
Maia, O. B., Duarte, R., Silva, A. M., Cara, D. C. and Nicoli, J. R. ( 2001). Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Veterinary Microbiology 79, 183189.Google Scholar
Malherbe, L., Filippi, C., Julia, V., Foucras, G., Moro, M., Appel, H., Wucherpfennig, K., Guery, J. C. and Glaichenhaus, N. ( 2000). Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13, 771782.CrossRefGoogle Scholar
Neumann, E., Oliveira, M. A., Cabral, C. M., Moura, L. N., Nicoli, J. R., Vieira, E. C., Cara, D. C., Podoprigora, G. I. and Vieira, L. Q. ( 1998). Monoassociation with Lactobacillus acidophilus UFV-H2b20 stimulates the immune defense mechanisms of germ-free mice. Brazilian Journal of Medical and Biological Research 31, 15651573.CrossRefGoogle Scholar
Nicaise, P., Gleizes, A., Forestier, F., Quéro, A. M. and Labarre, C. ( 1993). Influence of intestinal bacterial flora on cytokine (IL-1, IL-6 and TNF-alpha) production by mouse peritoneal macrophages. European Cytokine Network 4, 133138.Google Scholar
Nicaise, P., Gleizes, A., Forestier, F., Sandre, C., Quero, A. M. and Labarre, C. ( 1995). The influence of E. coli implantation in axenic mice on cytokine production by peritoneal and bone marrow-derived macrophages. Cytokine 7, 713719.Google Scholar
Nicaise, P., Gleizes, A., Sandre, C., Kergot, R., Lebrec, H., Forestier, F. and Labarre, C. ( 1999). The intestinal microflora regulates cytokine production positively in spleen-derived macrophages but negatively in bone marrow-derived macrophages. European Cytokine Network 10, 365372.Google Scholar
NATIONAL RESEARCH COUNCIL ( 1996). Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, Washington, D.C., National Academy Press.
Noben-Trauth, N., Lira, R., Nagase, H., Paul, W. E. and Sacks, D. L. ( 2003). The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major. Journal of Immunoogy 170, 51525158.CrossRefGoogle Scholar
Oliveira, M. A., Santiago, H. C., Lisboa, C. R., Ceravollo, I. P., Trinchieri, G., Gazzinelli, R. T. and Vieira, L. Q. ( 2000). Leishmania sp: comparative study with Toxoplasma gondii and Trypanosoma cruzi in their ability to initialize IL-12 and IFN-gamma synthesis. Experimental Parasitology 95, 96105.CrossRefGoogle Scholar
Oliveira, M. R., Tafuri, W. L., Nicoli, J. R., Vieira, E. C., Melo, M. N. and Vieira, L. Q. ( 1999). Influence of microbiota in experimental cutaneous leishmaniasis in Swiss mice. Revista do Instituto de Medicina Tropical de Sao Paulo 41, 8794.CrossRefGoogle Scholar
Oswald, I. P., Gazzinelli, R. T., Sher, A. and James, S. J. ( 1992). IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. Journal of Immunology 148, 35783582.Google Scholar
Parish, C. R. ( 1972). The relationship between humoral and cell-mediated immunity. Transplantation Reviews 13, 3566.CrossRefGoogle Scholar
Parish, C. R. and Liew, F. Y. ( 1972). Immune response to chemically modified flagellin. 3. Enhanced cell- mediated immunity during high and low zone antibody tolerance to flagellin. Journal of Experimental Medicine 135, 298311.Google Scholar
Pasare, C. and Medzhitov, R. ( 2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 10331036.CrossRefGoogle Scholar
Phillips, B. P. and Wolfe, P. A. ( 1959). The use of germ-free guinea pigs in studies on the microbial interrelationships in amoebiasis. Annals of the New York Academy of Sciences 78, 308314.Google Scholar
Pleasants, J. R. ( 1974). Gnotobiotics. In Handbook of Laboratory Animal Science. ( ed. Melby Jr., E. C. & Altman, N. H.), pp. 119174. CRC Press, Cleveland.
Powrie, F. and Maloy, K. J. ( 2003). Immunology. Regulating the regulators. Science 299, 10301031.Google Scholar
Ribeiro-Sobrinho, A. P., Maltos, S. M. M., Faria, L. M., Carvalho, M. A., Nicoli, J. R., Uzeda, M. and Vieira, L. Q. ( 2002). Cytokine production in response to endodontic infection in germ-free animals. Oral Microbiology and Immunology 17, 344353.CrossRefGoogle Scholar
Rodrigues, A. C., Cara, D. C., Fretez, S. H., Cunha, F. Q., Vieira, E. C., Nicoli, J. R. and Vieira, L. Q. ( 2000). Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. Journal of Applied Microbiology 89, 404414.CrossRefGoogle Scholar
Rodrigues, A. C., Nardi, R. M., Bambirra, E. A., Vieira, E. C. and Nicoli, J. R. ( 1996). Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. Journal Applied Bacteriology 81, 251256.CrossRefGoogle Scholar
Sacks, D. L., Hieny, S. and Sher, A. ( 1985). Identification of cell surface carbohydrate and antigenic changes between noninfective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564569.Google Scholar
Sadick, M. D., Heinzel, F. P., Holaday, B. J., Pu, R. T., Dawkins, R. S. and Locksley, R. M. ( 1990). Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. Journal of Experimental Medicine 171, 115127.Google Scholar
Santiago, H. C., Oliveira, M. A., Bambirra, E. A., Faria, A. M., Afonso, L. C., Vieira, L. Q. and Gazzinelli, R. T. ( 1999). Coinfection with Toxoplasma gondii inhibits antigen-specific Th2 immune responses, tissue inflammation, and parasitism in BALB/c mice infected with Leishmania major. Infection and Immunity 67, 49394944.Google Scholar
Scharton, T. M. and Scott, P. ( 1993). Natural killer cells are a source of IFN-γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. Journal of Experimental Medicine 178, 567577.CrossRefGoogle Scholar
Scharton-Kersten, T., Afonso, L. C. C., Wysocka, M., Trinchieri, G. and Scott, P. ( 1995). IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. Journal of Immunology 154, 53205330.Google Scholar
Scott, P. ( 1991). IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. Journal of Immunology 147, 31493155.Google Scholar
Silva, M. E., Evangelista, E. A., Nicoli, J. R., Bambirra, E. A. and Vieira, E. C. ( 1987). American trypanosomiasis (Chagas'diseae) in conventional and germ-free rats and mice. Revista do Instituto de Medicina Tropical de São Paulo 29, 284288.CrossRefGoogle Scholar
Soong, L., Xu, J. C., Grewal, I. S., Kima, P., Sun, J., Longley, B. J. Jr., Ruddle, N. H, McMahon-Pratt, D. and Flavell, R. A. ( 1996). Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4, 263273.CrossRefGoogle Scholar
Souza, D. G., Vieira, A. T., Soares, A. C., Pinho, V., Nicoli, J. R., Vieira, L. Q. and Teixeira, M. M. ( 2004). The essential role of the intestinal microbiota in facilitating acute inflammatory responses. Journal of Immunology 173, 41374146.CrossRefGoogle Scholar
Sypek, J. P., Chung, C. L., Mayor, S. E. H., Subramanyam, J. M., Goldman, S. J., Sieburth, D. S., Wolf, S. F. and Schaub, R. G. ( 1993). Resolution of cutaneous leishmaniasis: Interleukin 12 initiates a protective Th1 immune response. Journal of Experimental Medicine 177, 17971802.CrossRefGoogle Scholar
Titus, R. G., Kelso, A. and Louis, J. A. ( 1984). Intracellular destruction of Leishmania tropica by macrophages activated with macrophage activating factor/interferon. Clinical and Experimental Immunology 55, 157165.Google Scholar
Torres, M. R. F., Silva, M. E. C., Vieira, E. C., Bambirra, E. A., Sogayar, M. I. T., Pena, F. J. and Nicoli, J. R. ( 1992). Intragasgric infection of conventional and germ-free mice with Giardia lamblia. Brazilian Journal of Medical and Biological Research 25, 349353.Google Scholar
Vieira, L. Q., Goldschmidt, M., Nashleanas, M., Pfeffer, K., Mak, T. and Scott, P. ( 1996). Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. Journal of Immunology 157, 827835.Google Scholar
Vieira, E. C., Nicoli, J. R., Moraes-Santos, T., Silva, M. E., Costa, C. A., Mayrink, W. and Bambirra, E. A. ( 1987). Cutaneous leishmaniasis in germ-free, gnotobiotic, and conventional mice. Revista do Instituto de Medicina Tropical de São Paulo 29, 385387.CrossRefGoogle Scholar
Vieira, L. Q., Oliveira, M. R., Neumann, E., Nicoli, J. R. and Vieira, E. C. ( 1998). Parasitic infections in germ-free animals. Brazilian Journal of Medical and Biological Research 31, 105110.CrossRefGoogle Scholar
Vieira, L. Q. and Scott, P. ( 1996). Germ-free mice exhibit higher levels of IL-4 than conventional mice when infected with Leishmania major. Microecology and Therapy 24, 231236.Google Scholar
Wills-Karp, M., Santeliz, J. and Karp, C. L. ( 2001). The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Reviews Immunology 1, 6975.CrossRefGoogle Scholar
Yazdanbakhsh, M., Kremsner, P. G. and van Ree, R. ( 2002). Allergy, parasites, and the hygiene hypothesis. Science 296, 490494.CrossRefGoogle Scholar