Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T18:27:33.191Z Has data issue: false hasContentIssue false

Identification and characterization of a putative agglutination/immobilization antigen on the surface of Cryptocaryon irritans

Published online by Cambridge University Press:  20 April 2007

A. HATANAKA*
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
N. UMEDA
Affiliation:
Marine Biological Technology Center of Nippon Suisan Kaisha Ltd, 508-8 Ariakeura Tsurumi, Saiki-Shi, Oita 876-1204, Japan
S. YAMASHITA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
N. HIRAZAWA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
*
*Corresponding author: Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan. Tel: +81 426 56 5195. Fax: +81 426 56 5188. E-mail: hatanaka@nissui.co.jp

Summary

The ciliated protozoan Cryptocaryon irritans, a parasite of seawater fishes, was found to express an antigen that elicits antibodies in rabbits and tiger puffer (Takifugu ruburipes). Serum from rabbits and fish immunized with theronts had agglutination/immobilization activity against theronts in vitro; fish serum antibody levels (measured by enzyme-linked immunosorbent assays: ELISA) correlated with this activity. Anti-theront antibody levels in fish were significantly higher in the immunized group as compared with control fish at 2 weeks after booster immunization (injection of bovine serum albumin; Student's t-test, P<0·01). Biochemical analyses indicated that a Triton X-114-soluble 32 kDa theront integral membrane protein may be the agglutination/immobilization antigen. Indirect immunofluorescence staining of theronts suggested that this 32 kDa antigen was expressed on the surface of cilia. The full-length 32 kDa antigen cDNA contained 1147 basepairs, encoding a 328-amino acid protein including hydrophobic N- and C-termini. As with Tetrahymena and Paramecium spp., TAA and TAG appear to be used as glutamine codons in the 32 kDa antigen gene.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azzouz, N., Ranck, J. L. and Capdeville, Y. (1990). Purification of the temperature-specific surface antigen of Paramecium primaurelia with its glycosyl-phosphatidylinositol membrane anchor. Protein Expression and Purification 1, 1318.CrossRefGoogle ScholarPubMed
Border, C. (1981). Phase separation of integral membrane proteins in Triton X-114. The Journal of Biological Chemistry 256, 16041607.CrossRefGoogle Scholar
Bruns, P. J. (1971). Immobilization antigens of Tetrahymena pyriformis I. Assay and extraction. Experimental Cell Research 65, 445453.CrossRefGoogle ScholarPubMed
Caron, F. and Meyer, E. (1985). Does Paramecium primaurelia use a different genetic code in its macronucleous? Nature, London 314, 185188.CrossRefGoogle Scholar
Caron, F. and Meyer, E. (1989). Molecular basis of surface antigen variation in paramecia. Annual Review of Microbiology 43, 2342.CrossRefGoogle ScholarPubMed
Clark, T. G., Dickerson, H. W. and Findly, R. C. (1988). Immune response of channel catfish to ciliary antigens of Ichthyophthirius multifiliis. Developmental and Comparative Immunology 12, 581594.CrossRefGoogle ScholarPubMed
Clark, T. G., McGraw, R. A. and Dickerson, H. W. (1992). Developmental expression of surface antigen genes in the parasitic ciliate Ichthyophthirius multifiliis. Proceedings of the National Academy of Sciences, USA 89, 63636367.CrossRefGoogle ScholarPubMed
Colorni, A. and Burgess, P. J. (1997). Cryptocaryon irritans Brown 1951, the cause of White Spot Disease in marine fish: an update. Aquarium Sciences and Conservation 1, 217238.CrossRefGoogle Scholar
Dickerson, H. W., Clark, T. G. and Findly, R. C. (1989). Ichthyophthirius multifiliis has membrane-associated immobilization antigens. The Journal of Protozoology 36, 159164.CrossRefGoogle ScholarPubMed
Doerder, F. P., Berkowitz, M. S. and Skalican-Crowe, J. (1985). Isolation and genetic analysis of mutations at the SerH immobilization antigen locus of Tetrahymena thermophila. Genetics 111, 273286.CrossRefGoogle ScholarPubMed
Doerder, F. P. (2000). Sequence and expression of the SerJ immobilization antigen gene of Tetrahymena thermophila regulated by dominant epitosis. Gene 257, 319326.CrossRefGoogle Scholar
Eisenhaber, B., Bork, P. and Eisenhaber, F. (1999). Prediction of potential GPI-modification sites in proprotein sequences. Journal of Molecular Biology 292, 741758.CrossRefGoogle ScholarPubMed
Gerber, L. D., Kodukula, K. and Udenfriend, S. (1992). Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. The Journal of Biological Chemistry 267, 1216812173.CrossRefGoogle Scholar
Hanyu, N., Kuchino, Y. and Nishimura, S. (1986). Dramatic events in ciliate evolution: alternation of UAA and UAG termination codons due to anticodon mutations in two Tetrahymena tRNAsGln. EMBO Journal 5, 13071311.CrossRefGoogle Scholar
Hansma, H. G. (1985). The immobilization antigen of Paramecium aurelia is a single polypeptide chain. The Journal of Protozoology 22, 257259.CrossRefGoogle Scholar
Hatanaka, A., Umeda, N., Yamashita, S. and Hirazawa, N. (2005). A small ciliary surface glycoprotein of the monogenia parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 131, 591600.CrossRefGoogle Scholar
Hirazawa, N., Oshima, S., Hara, T., Mitsuboshi, T. and Hata, K. (2001). Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the red sea bream Pagrus major. Aquaculture 198, 219228.CrossRefGoogle Scholar
Iglesias, R., Paramá, A., Áivarez, M. F., Leiro, J., Ubeira, F. M. and Sanmertín, M. L. (2002). Philasterides dicentrarchi (Ciliophora: Scuticociliatide) express surface immobilization antigens that probably induce protective immune responses in turbots. Parasitology 126, 125134.CrossRefGoogle Scholar
Jones, I. G. (1965). Immobilization antigen in heterozygous clones of Paramecium aurelia. Nature, London 207, 769.CrossRefGoogle ScholarPubMed
Ko, Y. G. and Thompson, G. A. Jr. (1992). Immobilization antigens from Tetrahymena thermophila are glycosyl-phosphatidylinositol-linked proteins. The Journal of Protozoology 39, 719723.CrossRefGoogle ScholarPubMed
Kuchino, Y., Hanyu, N., Tashiro, F. and Nishimura, S. (1985). Tetrahymena thermophila glutamine tRNA and its gene that corresponds to UAA codon. Proceedings of the National Academy of Sciences, USA 82, 47584762.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680.CrossRefGoogle ScholarPubMed
Lin, Y., Cheng, G., Wang, X. and Clark, G. (2002). The use of synthetic genes for the expression of ciliate proteins in heterologous systems. Gene 288, 8594.CrossRefGoogle ScholarPubMed
Martindale, D. W. (1989). Codon usage in Tetrahymena and other ciliates. The Journal of Protozoology 36, 2934.CrossRefGoogle ScholarPubMed
Nielsen, E., You, Y. and Forney, J. (1991). Cysteine residue periodicity is a conserved structual feature of variable surface proteins from Paramecium tetraurelia. Journal of Molecular Biology 222, 835841.CrossRefGoogle Scholar
Ogawa, K. and Yokoyama, H. (1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.CrossRefGoogle Scholar
Preer, J. R. Jr., Preer, L. B., Rudman, D. M. and Barnett, A. J. (1985). Deviation from universal code shown by gene for surface protein 51A in Paramecium. Nature, London 314, 188190.CrossRefGoogle ScholarPubMed
Prescott, D. M. (1994). The DNA of ciliated protozoa. Microbiological Reviews 58, 233267.CrossRefGoogle ScholarPubMed
Schultz, J., Milpetz, F., Bork, P. and Ponting, C. P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proceedings of the National Academy of Sciences, USA 95, 58575864.CrossRefGoogle Scholar
Smith, D. L., Berkowitz, M. S., Potoczak, D., Krause, M., Raab, C., Quinn, F. and Doerder, F. P. (1992). Characterization of the T, L, I, S, M and P cell surface (immobilization) antigens of Tetrahymena thermophila: molecular weights, molecular isoforms, and crossreactivity of antisera. The Journal of Protozoology 39, 420428.CrossRefGoogle Scholar
Yoshinaga, T. and Dickerson, H. W. (1994). Laboratory propagation of Cryptocaryon irritans Brown, 1951 on salt water-adapted black mollies (Poecilia latipinna). Journal of Aquatic Animal Health 6, 197201.2.3.CO;2>CrossRefGoogle Scholar
Yoshinaga, T. and Nakazoe, J. (1997). Acquired protection and production of immobilization antibody against Cryptocaryon irritans (Ciliophora, Hymenostomatida) in mummichog (Fundulus heteroclitus). Fish Pathology 32, 229230.CrossRefGoogle Scholar
Wang, X. and Dickerson, H. W. (2002). Surface immobilization antigens of the parasitic ciliate Ichthyophthirius multufiliis elicits protective immunity in channel catfish (Ictalurus punctatus). Clinical and Diagnostic Laboratory Immunology 9, 176181.Google ScholarPubMed