Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T05:11:35.423Z Has data issue: false hasContentIssue false

Identification of Giardia species and Giardia duodenalis assemblages by sequence analysis of the 5.8S rDNA gene and internal transcribed spacers

Published online by Cambridge University Press:  17 March 2010

SIMONE M. CACCIÒ*
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
RELJA BECK
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
ANDRE ALMEIDA
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy Centro de Imunologia e Biologia Parasitária, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal
ANNA BAJER
Affiliation:
Department of Parasitology, Faculty of Biology, University of Warsaw, Poland
EDOARDO POZIO
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
*
*Corresponding author: Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy. Tel: +39 06 4990 2484. Fax: +39 06 4990 3561. E-mail: simone.caccio@iss.it

Summary

PCR assays have been developed mainly to assist investigations into the epidemiology of Giardia duodenalis, the only species in the Giardia genus having zoonotic potential. However, a reliable identification of all species is of practical importance, particularly when water samples and samples from wild animals are investigated. The aim of the present work was to genotype Giardia species and G. duodenalis assemblages using as a target the region spanning the 5.8S gene and the 2 flanking internal transcribed spacers (ITS1 and ITS2) of the ribosomal gene. Primers were designed to match strongly conserved regions in the 3′ end of the small subunit and in the 5′ end of the large subunit ribosomal genes. The corresponding region (about 310 bp) was amplified from 49 isolates of both human and animal origin, representing all G. duodenalis assemblages as well as G. muris and G. microti. Sequence comparison and phylogenetic analysis showed that G. ardeae, G. muris, G. microti as well as the 7 G. duodenalis assemblages can be easily distinguished. Since the major subgroups within the zoonotic assemblages A and B can be identified by sequence analysis, this assay is also informative for molecular epidemiological studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, R. D. (2001). Biology of Giardia lamblia. Clinical Microbiology Reviews 14, 447475.CrossRefGoogle ScholarPubMed
Boothroyd, J. C., Wang, A., Campbell, D. A. and Wang, C. C. (1987). An unusually compact ribosomal DNA repeat in the protozoan Giardia lamblia. Nucleic Acids Research 15, 40654084.CrossRefGoogle ScholarPubMed
Cacciò, S. M. and Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology 160, 7580.CrossRefGoogle ScholarPubMed
Coleman, A. W. (2007). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 35, 33223329.CrossRefGoogle ScholarPubMed
Edlind, T. D. and Chakraborty, P. R. (1987). Unusual ribosomal RNA of the intestinal parasite Giardia lamblia. Nucleic Acids Research 15, 78897901.CrossRefGoogle ScholarPubMed
Hopkins, R. M., Meloni, B. P., Groth, D. M., Wetherall, J. D., Reynoldson, J. A. and Thompson, R. C. (1997). Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. Journal of Parasitology 83, 4451.CrossRefGoogle ScholarPubMed
Hunt, C. L., Ionas, G. and Brown, T. J. (2000). Prevalence and strain differentiation of Giardia intestinalis in calves in the Manawatu and Waikato regions of North Island, New Zealand. Veterinary Parasitology 91, 7–13.CrossRefGoogle ScholarPubMed
Monis, P. T., Andrews, R. H., Mayrhofer, G. and Ey, P. L. (2003). Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infection Genetics and Evolution 3, 2938.CrossRefGoogle ScholarPubMed
Monis, P. T., Cacciò, S. M. and Thompson, R. C. A. (2009). Variation in Giardia: towards a taxonomic revision of the genus. Trends in Parasitology 25, 93–100.CrossRefGoogle ScholarPubMed
Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J. M., Schantz, P. M., Das, P., Lal, A. A. and Xiao, L. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Diseases 9, 14441452.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
Thompson, R. C. A. (2004). The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Veterinary Parasitology 126, 1535.CrossRefGoogle ScholarPubMed
van Keulen, H., Horvat, S., Erlandsen, S. L. and Jarroll, E. L. (1991). Nucleotide sequence of the 5.8S and large subunit rRNA genes and the internal transcribed spacer and part of the external spacer from Giardia ardeae. Nucleic Acids Research 19, 6050.CrossRefGoogle ScholarPubMed
van Keulen, H., Gutell, R. R., Campbell, S. R., Erlandsen, S. L. and Jarroll, E. L. (1992). The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris. Journal of Molecular Evolution 35, 318328.CrossRefGoogle ScholarPubMed
van Keulen, H., Macechko, T., Wade, S., Schaaf, S., Wallis, P. M. and Erlandsen, S. L. (2002). Presence of human Giardia in domestic, farm and wild animals, and environmental samples suggests a zoonotic potential for giardiasis. Veterinary Parasitology 108, 97–107.CrossRefGoogle ScholarPubMed
Wielinga, C. M. and Thompson, R. C. (2007). Comparative evaluation of Giardia duodenalis sequence data. Parasitology 134, 17951821.CrossRefGoogle ScholarPubMed