Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T05:07:33.092Z Has data issue: false hasContentIssue false

Identification of the fragment containing cross-reacting antigenic determinants in the variable surface glycoprotein of Trypanosoma brucei

Published online by Cambridge University Press:  06 April 2009

A. F. Barbet
Affiliation:
International Laboratory for Research on Animal Diseases [ILRAD], P.O. Box 30709, Nairobi Kenya
A. J. Musoke
Affiliation:
International Laboratory for Research on Animal Diseases [ILRAD], P.O. Box 30709, Nairobi Kenya
S. Z. Shapiro
Affiliation:
International Laboratory for Research on Animal Diseases [ILRAD], P.O. Box 30709, Nairobi Kenya
G. Mpimbaza
Affiliation:
International Laboratory for Research on Animal Diseases [ILRAD], P.O. Box 30709, Nairobi Kenya
T. C. McGuire
Affiliation:
Department of Microbiology and Pathology College of Veterinary Medicine, Washington State University, Pullman Washington 99164

Summary

125I-labelled, isolated variable surface glycoproteins (VSGs) of Trypanosoma b. brucei bind both homologous and heterologous anti-VSG sera and binding to heterologous antisera may be blocked by other unlabelled VSGs (Barbet & McGuire, 1978). This paper presents results which suggest that oligosaccharide residues have importance in the antigenic structure of VSG cross-reacting determinants. The ability of VSG to bind heterologous anti-VSG sera was destroyed by periodate oxidation but not by extensive proteolysis. A VSG glycopeptide fragment was isolated from two different VSGs, which blocked by 100 % the binding of VSG to heterologous anti-VSG sera and therefore contained the cross-reacting determinants. The native glycopeptide fragment was resistant to digestion with trypsin, pronase or leucine aminopeptidase and prolidase. We also show that a VSG synthesized in the reticulocyte lysate cell-free system was not immunoprecipitated by heterologous anti-VSG sera in contrast to the same VSG labelled by metabolic incorporation of [35S]methionine in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atassi, M.A. (1978). Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of ‘surface-simulation’ synthesis - a powerful new concept for protein binding sites. Immunochemistry 15, 909–33.CrossRefGoogle ScholarPubMed
Barbet, A. F. & McGuire, T. C. (1978). Cross-reacting determinants in variant-specific surface antigens of African trypanosomes. Proceedings of the National Academy of Sciences, USA 75, 1989–93.Google Scholar
Barbet, A. F., MCGUIRE, T. CMUSOKE, A. J. & HIRUMI, H. (1979). Cross-reacting determinants in trypanosome surface antigens. In Pathogenicity of Trypanosomes (ed. Losos, G. and Chouinard, A.), pp. 3843. Ottawa: International Development Research Centre.Google Scholar
Bridgen, P. J., Cross, G. A. M. & Bridgen, J. (1976). N-terminal amino-acid sequences of variant-specific surface antigens from Trypanosoma brucei. Nature London 263, 613–14.Google Scholar
Cowan, N. J.Milstein, C. (1973). The translation in vitro of mRNA for immunoglobulin heavy chains. European Journal of Biochemistry 36, 17.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1979). Cross-reacting determinants in the C-terminal region of trypanosome variant surface antigens. Nature, London 277, 310–12.CrossRefGoogle Scholar
Eisenman, R.Shaikh, R. (1978). Identification of an avian oncovirus polyprotein in uninfected chick cells. Cell 14, 89104.CrossRefGoogle ScholarPubMed
Eylar, E. H.Jeanloz, R. W. (1962). Periodate oxidation of the α1, acid glycoprotein of human plasma. Journal of Biological Chemistry 237, 1021–5.CrossRefGoogle ScholarPubMed
Hoeijmakers, J. H. J., Frasch, A. C. CBernards, A.Borst, P.Cross, G. A. M. (1980). Expression of variant surface antigens in trypanosomes is associated with the appearance of an altered copy of the gene coding for the antigen. Nature, London 284, 7880.Google Scholar
Holder, A. A.Cross, G. A. M. (1981). Glycopeptides from variant surface glycoproteins of Trypanosoma brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Molecular and Biochemical Parasitology 2, 135–50.CrossRefGoogle ScholarPubMed
Johnson, J. G.Cross, G. A. M. (1977). Carbohydrate composition of variant-specific surface antigen glycoproteins from Trypanosoma brucei. Journal of Protozoology. 24, 587 – 91.Google Scholar
Johnson, J. G.Cross, G. A. M. (1979). Selective cleavage of variant surface glycoproteins from Trypanosoma brucei. The Biochemical Journal 178, 689–7.CrossRefGoogle ScholarPubMed
Kessler, S. W. (1975). Rapid isolation of antigens from cells with a Staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. Journal of Immunology 115, 1617–24.CrossRefGoogle ScholarPubMed
Lanham, S. M.Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebhough, N. J.Farr, A. L.Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Maizel, J. V. (1971). Polyacrylamide gel electrophoresis of viral proteins. InMethodsin Virology, vol. 5 (ed. Maramorosch, K. and Koprowski, H.), pp. 179246. New York: Academic Press.Google Scholar
Pelham, H. R. B.Jackson, R. J. (1976). An efficient mRNA-dependent translation system from reticulocyte lysates. European Journal of Biochemistry 67, 247–56.CrossRefGoogle ScholarPubMed
Rovis, L., Barbet, A. F.Williams, R. O. (1978). Characterization of the surface coat of Trypanosoma congolense. Nature, London 271, 654–6.Google Scholar
Shapiro, S. Z.August, J. T. (1976). The use of immunoprecipitation to study the synthesis and cleavage processing of viral proteins. Journal of Immunological Methods. 13, 153–9.CrossRefGoogle Scholar
Shapiro, S. Z.Young, J. (1981). A method for specific mRNA purification: application to mRNA encoding trypanosome variable antigen. Journal of Biological Chemistry 256, 1495–8.CrossRefGoogle Scholar
Weimer, H. E.Moshin, J. R. (1953). Serum glycoprotein concentrations in experimental tuberculosis of guinea pigs. American Review of Tuberculosis 68, 594602.Google Scholar
Wright, K. A.Hales, H. (1970). Cytochemistry of the pellicle of bloodstream forms of Trypanosoma (trypanozoon) brucei. Journal of Parasitology 56, 671–83.CrossRefGoogle ScholarPubMed
Vickerman, K. (1974). Antigenic variation in African trypanosomes. Ciba Fdn Symp. 25, pp. 53–80. Amsterdam: Associated Scientific PublishersGoogle Scholar