Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T05:53:57.381Z Has data issue: false hasContentIssue false

Immune response to Trichinella epitopes: the antiphosphorylcholine plaque-forming cell response during the biological cycle

Published online by Cambridge University Press:  06 April 2009

F. M. Ubeira*
Affiliation:
Departamento de Microbiologia y Parasitología, Universidad de Santiago de Compostela, Spain
J. Leiro
Affiliation:
Departamento de Microbiologia y Parasitología, Universidad de Santiago de Compostela, Spain
M. T. Santamarina
Affiliation:
Departamento de Microbiologia y Parasitología, Universidad de Santiago de Compostela, Spain
T. G. Villa
Affiliation:
Departamento de Microbiologia y Parasitología, Universidad de Santiago de Compostela, Spain
M. L. Sanmartín-Durán
Affiliation:
Departamento de Microbiologia y Parasitología, Universidad de Santiago de Compostela, Spain
*
*Reprint requests: Dr F. M. Ubeira, Cátedra de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Spain.

Extract

Phosphorylcholine (PC), an immunodominant component of the cell wall of certain bacteria, fungi and nematodes, is known to induce low anti-PC antibody levels during natural infection by Trichinella spiralis. This article reports a study in which spleen cells from BCF1 mice infected with Trichinella sp. larvae were found to produce large numbers of direct haemolytic plaques in response to PC conjugated to sheep red blood cells (SRBC) after muscle-encysted larvae had been killed by treatment with mebendazole. Inhibition of the response by PC-chloride, immunodiffusion and immunoelectrophoretic studies with the anti-PC IgA (TEPC-15) and anti-idiotype T15 serum assays showed the plaque-forming cell (PFC) response to be specific for PC. The absence of haemolytic plaques when unconjugated SRBC or TNP-SRBC were used as indicator cells ruled out involvement of a polyclonal response. Greatest anti-PC PFC response was found to be associated with a microsomal fraction designated FCpl, a particulate fraction behaving as a thymus-dependent antigen. The FCpl fractions from all four strains of Trichinella employed induced anti-PC PFC responses when injected into mice. These results suggest that FCpl is a suitable antigen for use in detailed studies of immune responses to Trichinella and related parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, N. M., McLaren, D. J. & Parkhouse, R. M. E. (1986). A comparison of the surface secretions of Trichinella pseudospiralis and T. spiralis. Parasitology 93, 163–76.CrossRefGoogle ScholarPubMed
Andres, C. M., Maddalena, A., Hudak, S., Young, N. M. & Claflin, J. L. (1981). Anti-phosphocholine hybridoma antibodies. II. Functional analysis of binding sites within three antibody families. Journal of Experimental Medicine 154, 1584–98.CrossRefGoogle ScholarPubMed
Berek, C. (1984). The D segment defines the T15 idiotype: the immunoresponse of A/J mice to Pneumococcus pneumoniae. European Journal of Immunology 14, 1043–8.CrossRefGoogle Scholar
Brown, A. R. & Crandall, C. A. (1976). A phosphorylcholine idiotype related to TEPC-15 in mice infected with Ascaris suum. Journal of Immunology 116, 1105–9.CrossRefGoogle ScholarPubMed
Chesebro, B. & Metzger, H. (1972). Affinity labelling of a PC binding mouse myeloma protein. Biochemistry 11, 766–71.CrossRefGoogle Scholar
Claflin, J. L., Hudak, S. & Maddalena, A. (1981). Anti-phosphorylcholine hybridoma antigens. I. Direct evidence for three distinct families of antibodies in the murine response. Journal of Experimental Medicine 153, 352–64.CrossRefGoogle Scholar
Claflin, J. L., Hudak, S., Maddalena, A. & Bender, T. (1985). Antigen-specific antiphosphocholine antibodies: binding site studies. Journal of Immunology 134, 2536–43.CrossRefGoogle ScholarPubMed
Claflin, J. L., Lieberman, R. & Davie, J. J. (1974). Clonal nature of the immune response to phosphorylcholine. I. Specificity, class and idiotype of phosphorylcholine-binding receptors on lymphoid cells. Journal of Experimental Medicine 139, 5873.CrossRefGoogle ScholarPubMed
Cosenza, H. & Köhler, H. (1972). Specific inhibition of plaque formation to phosphorylcholine by antibody against antibody. Science 176, 1027–9.CrossRefGoogle ScholarPubMed
Cunningham, A. J. & Szenberg, A. (1968). Further improvements in the plaque technique for detecting single antibody forming cells. Immunology 14, 599606.Google ScholarPubMed
Despommier, D. D. & Laccety, A. (1981). Trichinella spiralis: Proteins and antigens isolated from a large-particle fraction derived from the muscle larva. Experimental Parasitology 51, 279–95.CrossRefGoogle ScholarPubMed
Despommier, D. D. (1981). Partial purification and characterization of protection-induced antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isolectric focussing. Parasite Immunology 3, 261–72.CrossRefGoogle Scholar
Faro, J. M., Seoane, R., Puentes, E., Ubeira, F. M. & Regueiro, B. J. (1985). Immunoresponses to Neisseria meningitidis epitopes: Primary versus secondary antiphosphorylcholine responses. Infection and Immunity 48, 428–32.CrossRefGoogle ScholarPubMed
Gearhart, P. J., Sigal, N. H. & Klinman, N. R. (1975). Heterogeneity of the Balb/c antiphosphorylcholine antibody response at the precursor level. Journal of Experimental Medicine 141, 5671.CrossRefGoogle Scholar
Jungery, M. & Ogilvie, M. (1982). Antibody response to stage-specific Trichinella spiralis antigens in strong and weak responder mouse strains. Journal of Immunology 129, 839–43.CrossRefGoogle ScholarPubMed
Köhler, H. (1975). The response to phosphoryleholine: dissecting an immune response. Transplantation Reviews 27, 2456.Google Scholar
Mitchell, G. F., Anders, R. F., Brown, G. V., Handman, E., Roberts-Thomson, I. C, Chapman, C. B., Forsyth, K. P., Kahl, L. P. & Cruise, K. M. (1982). Analysis of infection characteristics and antiparasite immune responses in resistant compared with susceptible hosts. Immunological Reviews 61, 137–88.CrossRefGoogle ScholarPubMed
Péry, P. & Luffau, G. (1979). Antigens of helminths. In The Antigens, vol. 5 (ed. Sela, M.), pp. 83172. New York: Academic Press.CrossRefGoogle Scholar
Péry, P., Petit, A., Poulain, J. & Luffau, G. (1974). Phosphorylcholine-bearing components in homogenates of nematodes. European Journal of Immunology 4, 637–9.CrossRefGoogle ScholarPubMed
Poxton, I. R., Tarblli, E. & Baddiley, J. (1978). The structure of C-polysaccharide from the walls of Streptococcus pneumoniae. The Biochemical Journal 175, 1933–42.CrossRefGoogle Scholar
Sanmartin-Durán, M. L., Santamarina, M. T. & Ubeira, F. M. (1986). Effect of clofibrate and hydrocortisone on intestinal Trichinellosis in mice. Veterinary Parasitology 21, 5560.CrossRefGoogle ScholarPubMed
Stein, L. D. & Sigal, N. H. (1984). Heterogeneity of the human phosphocholine-specific B cell repertoire. Journal of Immunology 132, 1329–35.CrossRefGoogle ScholarPubMed
Willians, K. R. & Claflin, J. L. (1980). Clonotypes of anti-phosphocholine antibodies induced with Proteus morganii (Potter). I. Structural and idiotypic similarities in a diverse repertoire. Journal of Immunology 125, 2429–36.CrossRefGoogle Scholar