Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:39:50.210Z Has data issue: false hasContentIssue false

Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium

Published online by Cambridge University Press:  06 April 2009

C. Zhong
Affiliation:
Institute of Immunology and Biological Sciences, Syntex Discovery Research, Palo Alto, CA, USA
P. J. Skelly
Affiliation:
Department of Tropical Public Health, Harvard School of Public Health, Boston, MA, USA
D. Leaffer
Affiliation:
Institute of Immunology and Biological Sciences, Syntex Discovery Research, Palo Alto, CA, USA
R. G. Cohn
Affiliation:
Institute of Immunology and Biological Sciences, Syntex Discovery Research, Palo Alto, CA, USA
J. P. Caulfield
Affiliation:
Institute of Immunology and Biological Sciences, Syntex Discovery Research, Palo Alto, CA, USA
C. B. Shoemaker
Affiliation:
Department of Tropical Public Health, Harvard School of Public Health, Boston, MA, USA

Summary

Adult parasites of Schistosoma mansoni reside within vertebrate mesenteric veins where they consume immense quantities of host glucose after transporting the sugar through their surface syncytium or tegument. Previously we obtained cDNA clones encoding two functional facilitated diffusion glucose transporter proteins expressed by S. mansoni adult worms (Skelly et al. 1994). Antibodies specific for one transporter (SGTP1) have been generated against an extrafacial and an internal domain of the protein and used to localize the protein by light and electron microscopy. By light microscopy both antibodies stain a linear structure approximately 1–5 μm from the surface of the tegument of adult male and female schistosomes. Electron microscopic examination of frozen thin sections show binding of the antibodies to membranes in the base of the tegument and not to the membranes covering the outer surface or their invaginations. Analysis of the gold distribution suggests that the extrafacial domain is disposed toward the interstitial space beneath the tegument and the internal domain faces the syncytial plasm. The localization suggests that SGTP1 may function to transport free glucose from within the tegument and into the interstitial fluids that bathe the internal organs of these parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennett, M. W. & Caulfield, J. P. (1991). Specific binding of human low-density lipoprotein to the surface of schistosomula of Schistosoma mansoni and ingestion by the parasite. American Journal of Pathology 138, 1173–82.Google Scholar
Bueding, E. (1950). Carbohydrate metabolism of Schistosoma mansoni. Journal of General Physiology 33, 473–95.Google ScholarPubMed
Burnette, W. N. (1981). ‘Western Blotting’: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112, 195203.CrossRefGoogle ScholarPubMed
Cornford, E. M., Fitzpatrick, A. M., Quirk, T. L., Diep, C. P. & Landlaw, E. M. (1988). Tegumental glucose permeability in male and female Schistosoma mansoni. Journal of Parasitology 74, 116–28.CrossRefGoogle ScholarPubMed
Davies, A., Ciardelli, T. L., Lienhard, G. E., Boyle, J. M., Whetton, A. D. & Baldwin, S. A. (1990). Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter. Biochemistry Journal 266, 799808.Google ScholarPubMed
Davis, A. H., Nanduri, J. & Watson, D. C. (1987). Cloning and gene expression of Schistosoma mansoni protease. Journal of Biological Chemistry 262, 12851–5.CrossRefGoogle ScholarPubMed
el Meanawy, M. A., Aji, T., Phillips, N. F. B., Davis, R. E., Salata, R. A., Malhotra, I., McClain, D., Aikawa, M. & Davis, A. H. (1990). Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites. American Journal of Tropical Medicine and Hygiene 43, 6778.CrossRefGoogle ScholarPubMed
Farrell, C. L. & Pardridge, W. M. (1991). Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proceedings of the National Academy of Sciences, USA 88, 5779–83.CrossRefGoogle ScholarPubMed
Fripp, P. J. (1967). The sites of (1-14C) glucose assimilation in Schistosoma haematobium. Comparative Biochemistry and Physiology 23, 893–8.CrossRefGoogle ScholarPubMed
Griffiths, G., Simons, K., Warren, G. & Tokuyasu, K. T. (1983). Immunoelectron microscopy using frozen thin sections: Application to studies of the intracellular transport of Semliki forest virus spike glycoproteins. Methods in Enzymology 96, 466–83.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988). Antibodies, a Laboratory Manual. Cold Spring Harbor Laboratory.Google Scholar
Harris, D. S., Slot, J. W., Geuze, H. J. & James, D. E. (1992). Polarized distribution of glucose transporter isoforms in Caco-2 cells. Proceedings of the National Academy of Sciences, USA 89, 7556–60.CrossRefGoogle ScholarPubMed
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: Changes in the outer membrane of the tegument during the development from cercaria to adult worm. International Journal for Parasitology 3, 1325.CrossRefGoogle ScholarPubMed
Isseroff, H., Bonta, C. Y. & Levy, M. G. (1972). Monosaccharide absorption by Schistosoma mansoni — I. Kinetic characteristics. Comparative Biochemistry and Physiology 43A, 849–58.CrossRefGoogle ScholarPubMed
Kaestner, K. H., Christy, R. J., McLenithan, J. C., Braiterman, L. T., Cornelius, P., Pekala, P. H. & Lane, M. D. (1989). Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-Ll adipocytes. Proceedings of the National Academy of Sciences, USA 86, 3150–4.CrossRefGoogle Scholar
Klinkert, M., Felleisen, R., Link, G., Ruppel, A. & Beck, E. (1989). Primary structures of Sm31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Molecular and Biochemical Parasitology 33, 113–22.CrossRefGoogle ScholarPubMed
Laemmli, E. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lin, K. & Cheng, S. (1991). An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli. BioTechniques 11, 748–53.Google ScholarPubMed
Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E. & Lodish, H. (1985). Sequence and structure of a human glucose transporter. Science 229, 941–5.CrossRefGoogle ScholarPubMed
Pax, R. A. & Bennett, J. L. (1990). Studies on intrategumental pH and its regulation in adult male Schistosoma mansoni. Parasitology 101, 219–26.CrossRefGoogle ScholarPubMed
Pax, R. A., Chen, G.-Z. & Bennett, J. L. (1987). Schisotosoma mansoni: measurements of Na+ ion activity in the tegument and the extracellular spaces using ion-selective microelectrodes. Experimental Parasitology 64, 219–27.CrossRefGoogle Scholar
Ramwani, J. & Mishra, R. K. (1986). Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. Journal of Biological Chemistry 261, 8894–8.CrossRefGoogle ScholarPubMed
Rogers, S. H. & Bueding, E. (1975). Anatomical localization of glucose uptake by Schistosoma mansoni adults. International Journal for Parasitology 5, 369–71.CrossRefGoogle ScholarPubMed
Samuelson, J. C., Caulfield, J. P. & David, J. R. (1982). Schistosomula of Schistosoma mansoni clear concanavalin A from their surface by sloughing. Journal of Cellular Biology 94, 355–62.CrossRefGoogle ScholarPubMed
Silk, M. H., Spence, I. M. & Gear, J. H. S. (1969).Ultrastructural studies on the blood fluke Schistosoma mansoni. I. The integument. South African Journal of Medical Science 34, 110.Google ScholarPubMed
Skelly, P. J., Stein, L. D. & Shoemaker, C. B. (1993). Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Molecular and Biochemical Parasitology 60, 93104.CrossRefGoogle ScholarPubMed
Skelly, P. J., Kim, J. W., Cunningham, J. & Shoemaker, C. B. (1994). Cloning, characterization and functional expression of cDNAs encoding glucose transporter proteins from the human parasite, Schistosoma mansoni. Journal of Biological Chemistry 269, 4247–53.CrossRefGoogle ScholarPubMed
Smith, J. H., Reynolds, E. S. & Von Lichtenberg, F. (1969). The integument of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 18, 2849.CrossRefGoogle ScholarPubMed
Thorens, B., Cheng, Z., Brown, D. & Lodish, H. F. (1990 a). Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. American Journal of Physiology 259, C279–C285.CrossRefGoogle ScholarPubMed
Thorens, B., Lodish, H. F. & Brown, D. (1990 b). Differential localization of two glucose transporter isoforms in rat kidney. American Journal of Physiology 259, C286–C294.CrossRefGoogle ScholarPubMed
Tokuyasu, K. T. (1978). A study of positive staining of ultrathin frozen sections. Journal of Ultrastructure Research 63, 287307.CrossRefGoogle ScholarPubMed
Uglem, G. L. & Read, C. P. (1975). Sugar transport and metabolism in Schistosoma mansoni. Journal of Parasitology 61, 390–7.CrossRefGoogle ScholarPubMed