Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T11:14:18.716Z Has data issue: false hasContentIssue false

In vitro feeding of instars of the ixodid tick Amblyomma variegatum on skin membranes and its application to the transmission of Theileria mutans and Cowdria ruminantium

Published online by Cambridge University Press:  06 April 2009

W. P. Voigt
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
A. S. Young
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
S. N. Mwaura
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
S. G. Nyaga
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
G. M. Njihia
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
F. N. Mwakima
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya
S. P. Morzaria
Affiliation:
The International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya

Summary

An in vitro feeding method using rabbit or cattle skin membranes, applied successfully to all stages (larvae, nymphae and adults) of the ixodid tick, Amblyomma variegatum, is described. The feeding apparatus consisted of a blood container with a membrane placed on top of a tick containment unit. A carbon dioxide atmosphere of between 5 and 10% and a temperature of 37 °C were used as stimulants for the attachment of the ticks. High CO2 concentrations in the atmosphere improved the feeding success of all instars. The effect of anticoagulation methods for the bloodmeal was investigated, and heparinized blood was found to be the most suitable for tick feeding. When the bloodmeal was replaced by tissue culture medium for feeding nymphs the subsequent moulting success was reduced. Adult ticks of both sexes remained attached for up to 16 days, until completion of their bloodmeals. All stages of the tick fed on whole blood in the artificial feeding system and all reached engorged weights less than those achieved by control ticks fed on experimental animals. A large proportion of ticks, fed artificially on whole blood, moulted or laid eggs successfully. The method was successfully applied for the transmission of Theileria mutans and Cowdria ruminantium to cattle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arthur, D. R. (1962). Ticks and Disease. Oxford: Pergamon Press.Google Scholar
Bailey, K. P. (1960). Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bulletin of Epizootic Diseases of Africa 8, 33–4.Google Scholar
Bauer, B. & Wetzel, H. (1976). A new membrane for feeding Glossina morsitans Westw. (Diptera, Glossinidae). Bulletin of Entomological Research 65, 563–5.CrossRefGoogle Scholar
Branagan, D. (1969). The maintenance of Theileria parva infections by means of the ixodid tick Rhipicephalus appendiculatus. Tropical Animal Health and Production 1, 119–30.CrossRefGoogle Scholar
Chabaud, A. G. (1950). Sur la nutrition artificielle des tiques. Annales de Parasitologie Humaine et Comparée 25, 42–7.CrossRefGoogle Scholar
Garcia, R. (1962). Carbon dioxide as an attractant for ticks (Acarina: Argasidae and Ixodidae). Annals of the Entomological Society of America 55, 605–6.CrossRefGoogle Scholar
Garcia, R. (1969). Reaction of the winter tick Dermacentor albipictus (Packard) to CO2. Journal of Medical Entomology 6, 286.CrossRefGoogle ScholarPubMed
Gray, J. (1985). A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Experimental and Applied Acarology 1, 3544.CrossRefGoogle ScholarPubMed
Gregson, J. D. (1967). Observation on the movement of fluids in the vicinity of mouth parts of naturally feeding Dermacentor andersoni Stiles. Parasitology 57, 18.CrossRefGoogle Scholar
Hefnawy, T. (1970). Biochemical and physiological studies of certain ticks (Ixodoidea): water loss from the spiracles of Hyalomma (H.) dromedarii Koch (Ixodidae) and Ornithodoros (O.) savignyi (Audouin) (Argasidae). Journal of Parasitology 56, 362–6.CrossRefGoogle Scholar
Irvin, A. D. & Brocklesby, D. W. (1970). Rearing and maintaining Rhipicephalus appendiculatus in the laboratory. Journal of the Institute of Animal Technicians 21, 278–84.Google Scholar
Katende, J. M., Goddeeris, B. M., Morzaria, S. P., Nkonge, C. G. & Musoke, A. J. (1990). Identification of a Theileria mutans-specific antigen for use in an antibody and antigen detection ELISA. Parasite Immunology 12, 419–33.CrossRefGoogle Scholar
Kaufman, R. W. (1989). Tick host interaction: a synthesis of current concepts. Parasitology Today 5, 4756.CrossRefGoogle ScholarPubMed
Kemp, D. H., Keidstall, D., Roberts, J. A. & Kert, J. D. (1975). Feeding of Boophilus microplus larvae on a partially defined medium through thin slices of cattle skin. Parasitology 70, 243–54.CrossRefGoogle ScholarPubMed
Kemp, D. H., Stone, B. F. & Binnington, K. E. (1982). Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and the host response. In Physiology of Ticks (ed. Obenchain, F. D. & Galun, R.), pp. 119–68. Oxford: Pergamon Press.CrossRefGoogle Scholar
Miles, V. I. (1968). A carbon dioxide bait trap for collecting ticks and fleas from animal burrows. Journal of Medical Entomology 5, 491–5.CrossRefGoogle ScholarPubMed
Mutugi, J. J. (1986). Transmission studies of a pathogenic strain of Theileria mutans. In Tick and Tick-borne Diseases (ed. Sutherst, R. W.), pp. 95–6. Canberra: Australian Centre for International Agricultural Research.Google Scholar
Norval, R. A. I., Perry, B. D. & Young, A. S. (1992 a). Epidemiology of Theileriosis in Africa. London: Academic Press.Google Scholar
Norval, R. A. I., Sonenshine, D. E. & Peter, T. (1992 b). Attraction/Aggregation/Attachment Pheromone (AAAP) of the bont leg ticks, Amblyomma hebraeum and A. variegatum. Proceedings of the First International Conference on Tick-borne Pathogens at the Host-Vector Interface (ed. Munderloh, U. G. & Kurtii, T. J.), pp. 324–7. St Paul: University of Minnesota.Google Scholar
Obenchain, F. D. & Galun, R. (1982). Physiology of Ticks. Oxford: Pergamon Press.Google Scholar
Phillip, C. B. (1963). Ticks as purveyors of animal ailments. A review of pertinent data and of recent contributions. Advances in Acarology 1, 285325.Google Scholar
Purnell, R. E. & Joyner, L. P. (1967). Artificial feeding technique for Rhipicephalus appendiculatus and transmission of Theileria parva from salivary gland secretions. Nature, London 216, 484–5.CrossRefGoogle Scholar
Rudolph, D. (1976). Untersuchungen ueber das Wassergleichgewicht ixodider Zechen unter besonderer Beruecksichtigung von Ort und Mechanismus der aktiven Wasserdampfaufnahme aus der Atmosphere. Inaugural dissertation, Freie Universität, Berlin.Google Scholar
Waladde, S. M., Ochieng', S. A. & Gichuhi, P. M. (1991). Artificial-membrane feeding of the ixodid tick, Rhipicephalus appendiculatus, to repletion. Experimental and Applied Acarology 11, 297306.CrossRefGoogle ScholarPubMed
Waladde, S. M. & Rice, M. J. (1982). The sensory basis of tick feeding behavior. In Physiology of Ticks (ed. Obenchain, F. D. & Galun, R.), pp. 71118. Oxford: Pergamon Press.CrossRefGoogle Scholar
Waladde, S. M., Young, A. S., Ochieng', S. A., Mwaura, S. N. & Mwakima, F. N. (1993). Transmission of Theileria parva to cattle by Rhipicephalus appendiculatus adults fed as nymphae in vitro on infected blood through an artificial membrane. Parasitology 107, 249–56.CrossRefGoogle ScholarPubMed
Wilson, J., Kinzer, D., Sauer, J. R. & Hair, J. A. (1972). Chemo-attraction in the lone star tick (Acarina: Ixodidae). I. Response of different development stages to carbon dioxide administered via traps. Journal of Medical Entomology 9, 245–52.CrossRefGoogle Scholar