Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T11:29:19.145Z Has data issue: false hasContentIssue false

Infection dynamics of larval Bothriocephalus claviceps in Cyclops vicinus

Published online by Cambridge University Press:  06 April 2009

P. Nie
Affiliation:
Hatherly Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, UK
C. R. Kennedy
Affiliation:
Hatherly Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, UK

Summary

The infection dynamics of Cyclops vicinus by the larvae of Bothriocephalus claviceps were studied experimentally. The mean number of procercoids/copepod rose to a plateau of approximately 14 as the density of eggs increased, whilst the number of copepods surviving decreased correspondingly. Copepods exposed to eggs of B. claviceps survived less well than controls, and those exposed to a higher density of eggs survived less well than those to a lower density. The mean number of parasites/copepod and the mortality of copepods were found to increase with the increasing time of exposure to eggs even when egg density was constant. These two parameters were also found to differ between gravid female copepods and unsexed young copepods. Young copepods suffered a higher parasite burden and thus a higher mortality, indicating that there are age or developmental-stage related differences in susceptibility of copepods to infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1978). The regulation of host population growth by parasitic species. Parasitology 76, 119–57.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Crombie, J. (1984). Experimental studies of age-prevalence curves of Schistosoma mansoni infection in populations of Biomphalaria glabrata. Parasitology 89, 79104.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host–parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Bliss, C. I. & Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data, with a note on the efficient fitting of the negative binomial. Biometrica 9, 176200.CrossRefGoogle Scholar
Clarke, A. S. (1954). Studies on the life cycle of the pseudophyllidean cestode Schistocephalus solidus. Proceedings of the Zoological Society of London 124, 257302.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179–94.CrossRefGoogle Scholar
Dupont, F. & Gabrion, C. (1987). The concept of specificity in the procercoid copepod system: Bothriocephalus claviceps (Cestoda) a parasite of the eel Anguilla anguilla. Parasitology Research 73, 151–8.CrossRefGoogle ScholarPubMed
Granath, W. O. Jr. & Esch, G. W. (1983 a). Temperature and other factors that regulate the composition and infrapopulation densities of Bothriocephalus acheilognathi (Cestoda) in Gambusia affinis (Pisces). Journal of Parasitology 69, 1116–24.CrossRefGoogle Scholar
Granath, W. O. Jr. & Esch, G. W. (1983 b). Seasonal dynamics of Bothriocephalus acheilognathi in ambient and thermally altered areas of a North Carolina cooling reservoir. Proceedings of the Helminthological Society of Washington 50, 205–18.Google Scholar
Gurney, R. (1933). British Freshwater Copepods, vol. 3. London: Ray Society.Google Scholar
Guttowa, A. (1961 a). Experimental investigation on the system: procercoids of Diphyllobothrium latum (L.) – copepods. Acta Parasitologica Polonica 9, 371408.Google Scholar
Guttowa, A. (1961 b). Potential intermediate host (Copepoda) of the broad tapeworm of man Diphyllobothrium latum (L.) in Norway. Nytt Magasim for Zoologi 10, 5762.Google Scholar
Halvorsen, O. (1966). Studies on the helminth fauna of Norway: VII: an experimental investigation of copepods as first intermediate hosts for Diphyllobothrium norvegicum Vik (Cestoda). Nytt Magasin for Zoologi 13, 83117.Google Scholar
Harding, J. P. S. & Smith, W. A. (1974). A key to the British freshwater cyclopid and calanoid copepods. Freshwater Biological Association, Scientific Publication No. 18. 2nd Edn.Google Scholar
Jarecka, L. (1959). On the life cycle of Bothriocephalus claviceps (Goeze, 1782). Acta Parasitologica Polonica 7, 527–33.Google Scholar
Jarecka, L. (1964). Cycle évolutif à un seul hôte intermédiaire chez Bothriocephalus claviceps (Goeze, 1782), cestode de Anguilla anguilla (L.). Annales de Parasitologie Humaine et Comparée 39, 149–56.CrossRefGoogle Scholar
Jarroll, C. R. (1979). Population biology of Bothriocephalus rarus Thomas (1837) in the redspotted newt, Notophthalmus viridescens. Parasitology 79, 183–93.CrossRefGoogle Scholar
Keymer, A. E. (1980). The influence of Hymenolepis diminuta on the survival and fecundity of the intermediate host, Tribolium confusum. Parasitology 81, 405–21.CrossRefGoogle ScholarPubMed
Keymer, A. E. (1981). Population dynamics of Hymenolepis diminuta in the intermediate host, Tribolium confusum. Parasitology 81, 405–21.CrossRefGoogle Scholar
Keymer, A. E. (1982). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of exposure time and host density. Parasitology 84, 157–66.CrossRefGoogle ScholarPubMed
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
Lawler, G. H. & Watson, N. H. F. (1963). Measurements of immature stages of Triaenophorus. Journal of the Fisheries Research Board of Canada 20, 1089–93.CrossRefGoogle Scholar
Marcogliese, D. J. & Esch, G. W. (1989). Experimental and natural infections of planktonic and benthic copepods by the Asian tapeworm, Bothriocephalus acheilognathi. Proceedings of the Helminthological Society of Washington 56, 151–5.Google Scholar
Michajlow, W. (1953). The intraspecies relationships in the procercoid populations of Triaenophorus lucii (Mull.) Acta Parasitologica Polonica 1, 228.Google Scholar
Nie, P. & Kennedy, C. R. (1991 a). The population biology of Camallanus lacustris (Zoega) in eels, Anguilla anguilla (Linnaeus), and their status as its host. Journal of Fish Biology 38, 653–61.CrossRefGoogle Scholar
Nie, P. & Kennedy, C. R. (1991 b). Population biology of Protocephalus macrocephalus (Creplin) in the European eel, Anguilla anguilla (Linnaeus), in two small rivers. Journal of Fish Biology 38, 921–7.CrossRefGoogle Scholar
Nie, P. & Kennedy, C. R. (1992). Population biology of Bothriocephalus claviceps (Goeze) (Cestoda) in the European eel, Anguilla anguilla (L.), in three localities in southwest England. Journal of Fish Biology 41, 521–31.CrossRefGoogle Scholar
Rau, M. E. (1979). The frequency distribution of Hymenolepis diminuta cysticercoids in natural, sympatric populations of Tenebrio molitor and T. obscurus. International Journal for Parasitology 9, 85–7.CrossRefGoogle Scholar
Rosen, R. & Dick, T. A. (1983). Development and infectivity of the procercoid of Triaenophorus crassus Forel and mortality of the first intermediate host. Canadian Journal of Zoology 61, 2120–8.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. San Francisco, W. H. Freeman and Company. 2nd Edn.Google Scholar
Watson, N. H. F. & Price, J. L. (1960). Experimental infections of cyclopid copepods with Triaenophorus crassus Ford, and T. nodulosus (Pallas). Canadian Journal of Zoology 38, 345–56.CrossRefGoogle Scholar