Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T16:17:29.986Z Has data issue: false hasContentIssue false

The ingestion of particulate fat from the blood by Trypanosoma lewisi and Trypanosoma equiperdum*

Published online by Cambridge University Press:  06 April 2009

R. M. Wotton
Affiliation:
The Department of Zoology and Anatomy, The University of Nebraska, Lincoln, Nebraska
H. R. Halsey
Affiliation:
The Department of Zoology and Anatomy, The University of Nebraska, Lincoln, Nebraska

Extract

The ability of certain species of trypanosomes (T. lewisi and T. equiperdum) to ingest previously stained oil drops which occurred simultaneously in the blood has been observed.

Tryparsamide incorporated in dyed (Sudan IV) cod-liver oil.when administered orally, was found to be effective against T. equiperdum infections in mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borradaile, L. A., Eastham, L. E. S., Potts, F. A. & Saunders, J. T. (1951). The Invertebrata, p. 20. Cambridge University Press.Google Scholar
Brand, T. von (1951). The physiology of blood flagellates. In Parasitic Infections in Man, p. 96. New York: Columbia University Press.Google Scholar
Brand, T. von (1952). Chemical Physiology of Endoparasitic Animals, pp. 126–8. New York: Academic Press.Google Scholar
Cameron, G. R. (1954). The exploration of the cell in health and disease. Brit. Med. J. no. 4896, 1061.CrossRefGoogle ScholarPubMed
Chambers, R. & Kopac, M. J. (1937 a). The coalescence of living cells with oil drops. I. Arabacia eggs immersed in sea water. J. Cell. Comp. Physiol. 9, 331.CrossRefGoogle Scholar
Chambers, R. & Kopac, M. J. (1937 b). The coalescence of living cells with oil drops. II. Arabacia eggs immersed in acid or alkaline calcium solutions. J. Cell. Comp. Physiol. 10, 21.Google Scholar
Culbertson, J. T. (1939). Studies on age resistance against trypanosome infections. IV. The activity of germanin (Bayer 205) upon Trypanosome equiperdum infections in rats of different age groups. Amer. J. Hyg. 29, 33.Google Scholar
Culbertson, J. T. & Wotton, R. M. (1939). Studies on age resistance against trypanosome infections. VI. Production of ablastin in rats of different age groups after infection with Trypanosome lewisi. Amer. J. Hyg. 30, 101.Google Scholar
Davis, H. L. & Davis, N. L. (1956). Plasma gels and colloidal stability. (Abstract.) 20th Int. Congr. Physiol. Brussels. Résumés des communications. St Catherine Press.Google Scholar
Davis, H. L. & Musselman, M. M. (1954). Blood particle agglomeration and fat embolism. Int. Rec. Med. Gen. Pract. Clin. 167, 439.Google ScholarPubMed
Frazer, A. C. (1952 a). The mechanism of fat absorption. Biochem. Soc. Symp. 9, 5.Google Scholar
Frazer, A. C. (1952 b). The physiology of fat absorption. In Modern Trends in Gastroenterology, p. 477. London: Butterworth & Co.Google Scholar
Gage, S. H. & Fish, P. A. (1924). Fat digestion, absorption, and assimilation in man and animals as determined by the dark-field microscope, and a fat-soluble dye. Amer. J. Anat. 24, 1.CrossRefGoogle Scholar
Harvey, N. E. (1937). Cytoplasm, surface tension. Trans. Faraday Soc. 33, 943.CrossRefGoogle Scholar
Hewitt, W. (1954). A histochemical study of fat absorption in the small intestine of the rat. Quart. J. Micr. Sci. 95, 153.Google Scholar
Hewitt, W. (1956). Further observations on the histochemistry of fat absorption in the small intestine of the rat. Quart. J. Micr. Sci. 97, 199.Google Scholar
Raper, H. S. (1949). Fat absorption and some of its problems. Brit. Med. J. no. 4630, 719.CrossRefGoogle ScholarPubMed
Wotton, R. M. (1937). The application of glychrogel mounting for trematodes. Stain Tech. 12, 145.CrossRefGoogle Scholar
Wotton, R. M. (1940). A study of the mitochondria of trypanosomes. Quart. J. Micr. Sci. 82, 261.Google Scholar
Wotton, R. M. & Martin, A. Jr. (1951). The reaction in the lung of the cat toward oil droplets in the circulation. Anat. Rec. 110, 267.CrossRefGoogle ScholarPubMed
Wotton, R. M. & Mosti, M. E. (1955). The direct absorption of previously stained fat in droplet form by the myocardium of the cat. Anat. Rec. 122, 39.CrossRefGoogle ScholarPubMed
Wotton, R. M. & Village, P. A. (1951). The transfer function of certain cells in the wall of the Graafian follicle as revealed by their reaction to previously stained fat in the cat. Anat. Rec. 110, 121.CrossRefGoogle ScholarPubMed
Wotton, R. M. & Zwemer, R. L. (1935). A note on ‘Glychrogel’ mounting solution. Stain Tech. 10, 21.CrossRefGoogle Scholar
Wotton, R. M. & Zwemer, R. L. (1939). Studies on direct and visible ingestion of fat by differentiated body cells of the cat. Anat. Rec. 75, 493.CrossRefGoogle Scholar
Zwemer, R. L. (1933). A method for studying adrenal and other lipoids by a modified gelatin embedding and mounting technique. Anat. Rec. 57, 41.CrossRefGoogle Scholar
Zwemer, R. L. & Wotton, R. M. (1944). Fat excretion in the guinea pig kidney. Anat. Rec. 90, 107.CrossRefGoogle Scholar