Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T11:36:36.619Z Has data issue: false hasContentIssue false

Integration and expression of murine retrovirus-related sequences in schistosomes

Published online by Cambridge University Press:  06 April 2009

M. Tanaka
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Y. Iwamura
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
H. Amanuma
Affiliation:
The Institute of Physical and Chemical Research, Tsukuba, Ibaraki 305, Japan
Y. Irie
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
M. Watanabe
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
T. Watanabe
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Y. Uchiyama
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
K. Yasuraoka
Affiliation:
The Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Summary

Antibodies against the retrovirus envelope glycoprotien (gp70) of mouse xenotropic retrovirus, BALB virus 2 (Bv2) reacted with the adult worms of Schistosoma japonicum and S. mansoni. This reaction was completely inhibited after adsorption of the antibodies with virions of retrovirus. The reactive schistosome antigen was located in the subtegumental layer of the adult male fluke and in the vitelline gland of the adult female of S. japonicum and S. mansoni. Proteins extracted from both parasites were examined by immunoblot analysis. Anti-Bv2 gp70 antiserum reacted with those proteins from both schistosomes and the band patterns were different among sexes and species. Southern hybridization of the DNA extracted from adults of S. japonicum and S. mansoni demonstrated the presence of sequences homologous to the env gene of mouse ecotropic and xenotropic retroviruses. DNA sequences homologous to the gag and pol regions of the ecotropic murine leukaemia virus were also detected in the DNAs of schistosomes

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, A., Sakai, K., Kitamura, N., Nakanishi, S., Niwa, O., Matsuyama, M., & Ishimoto, A., (1984). Characterization of the env gene and long terminal repeat of molecularly cloned Friend mink cell Focus-inducing virus DNA. Journal of Virology 50, 813–21.Google Scholar
Arcement, L. J., Karshin, W. L., Naso, R. B., Jamjoom, G., & Arlinghaus, R. B., (1976). Biosynthesis of Rausher leukemia viral proteins: presence of p30 and envelope pi 5 sequences in precursor polypeptides. Virology 69, 763–74.Google Scholar
Buckler, C. E., Hoggan, M. D., Chan, H. W., Sears, J. F., Khan, A. S., Moore, J. L., Hartley, J. W., Rowe, W. P., & Martin, M. A., (1982). Cloning and characterization of an envelope-specific probe from xenotropic murine leukemia proviral DNA. Journal of Virology 41, 228–36.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J. P., Capron, M., Ouma, J. H., & Butterworth, A. E., (1987). Immunity to schistosomes: progress toward vaccine. Science 238, 1065–72.Google Scholar
Chan, H. W., Bryant, T., Moore, J. L., Staal, S. P., Rowe, W. P., & Martin, M. A., (1980). Identification of ecotropic proviral sequences in inbred mouse strains with a cloned subgenomic DNA fragment. Proceedings of the National Academy of Sciences, USA 77, 2779–83.Google Scholar
Clegg, J. A., Smithers, S. R., & Terry, R. J., (1970). ‘H o s t’ antigens associated with schistosomes: observations on their attachment and their nature. Parasitology 61, 8794.Google Scholar
Clegg, J. A., Smithers, S. R., & Terry, R. J., (1971). Acquisition of human antigens by Schistosoma mansoni during cultivation in vitro. Nature, London 232, 653–4.Google Scholar
Dean, D. A., & Sell, K. W., (1972). Surface antigens on Schistosoma mansoni. II. Absorption of a Forssmanlike host antigen by schistosomula. Clinical and Experimental Immunology 12, 525–40.Google Scholar
Goldring, O. L., Clegg, J. A., Smithers, S. R., & Terry, R. J., (1976). Acquisition of human blood group antigens by Schistosoma mansoni. Clinical and Experimental Immunology 26, 181–7.Google Scholar
Goldring, O. L., Kusel, J. R., & Smithers, S. R., (1977). Schistosoma mansoni: origin in vitro of host-like surface antigens. Experimental Parasitology 43, 8293.CrossRefGoogle ScholarPubMed
Goldring, O. L., Sher, S. R., Smithers, S. R., & Mclaren, D. J., (1977). Host antigens and parasite antigens of murine Schistosoma mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 144–51.Google Scholar
Heine, C. W., Kelly, D. C., & Avery, R. J., (1980). The detection of intracellular retrovirus—like entities in Drosophila melanogaster cell-cultures. Journal of General Virology 49, 385–95.Google Scholar
Kasahara, M., Hinkle, P. C., Ikawa, Y., & Amanuma, H., (1986). Decrease in glucose transport activity of Friend erythroleukemia cell caused by dimethylsulfoxide, a differentiation-inducing reagent. Biochimica et Biophysica Acta 856, 615–23.Google Scholar
Lowry, O., Rosebrough, N. J., Farr, A. L., & Randall, R. J., (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.Google Scholar
Lowy, D. R., (1985). Transformation and oncogenesis: retroviruses. In Virology (ed. Fields, B. N., Knipe, D. M., Chanock, R. M., Melnick, J. L., Roizman, B., & Shope, R. E.,), pp. 235–63. New York: Raven Press.Google Scholar
Maniatis, T., Fritsch, E. F., & Sambrook, J., (1982). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Mayor, H. D., Hampton, J. C., & Rosario, B., (1961). A simple method for removing the resin from epoxy embedded tissue. Journal of Cell Biology 9, 909–10.Google Scholar
Morse, H. C. III, Chused, T. M., Boehm-Truitt, M., Mathieson, B. J., Sharrow, S. O., & Hartley, J. W., (1979). XenCSA: Cell surface antigens related to the major glycoproteins (gp70) of xenotropic murine leukemia viruses. Journal of Immunology 122, 443–54.CrossRefGoogle Scholar
Naso, R. B., Arcement, L. J., & Arlinghaus, R. B., (1975). Biosynthesis of Rauscher leukemia viral proteins. Cell 4, 31–6.Google Scholar
Obata, M., Amanuma, H., Harada, Y., Sagata, N., & Ikawa, Y., (1984). Env-related leukemogenic genes (gp55 genes) of two closely related polycythemic strains of Friend spleen focus-forming virus possess different recombination points with an endogenous mink cell focus-forming virus env gene. Virology 136, 435–8.Google Scholar
Oldstone, M. B. A., (1987). Molecular mimicry and autoimmune disease. Cell 50, 819–20.CrossRefGoogle ScholarPubMed
Sell, L. W., & Dean, D. A., (1972). Surface antigens of Schistosoma mansoni. I. Demonstration of host antigens on schistosomula and adult worms using the mixed antiglobulin test. Clinical and Experimental Immunology 12, 315–24.Google Scholar
Smithers, S. R., & Terry, R. J., (1969). Immunity in schistosomiasis. Annals of the New York Academy of Sciences 160, 826–40.CrossRefGoogle ScholarPubMed
Smithers, S. R., Terry, R. J., & Hockley, D. J., (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society of London, B 171, 483–93.Google ScholarPubMed
Southern, E. M., (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.Google Scholar
Stoye, J., & Coffin, J., (1985). Endogenous viruses. In RNA Tumour Viruses, 2nd Edn (ed. Weiss, R., Teich, N., Varmus, H., & Coffin, J.,), pp. 357–04. New York: Cold Spring Harbor Laboratory.Google Scholar