Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T12:13:40.807Z Has data issue: false hasContentIssue false

Interspecific and intraspecific interactions in the monogenean communities of fish: a question of study scale?

Published online by Cambridge University Press:  12 April 2007

A. KARVONEN*
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014University of Jyväskylä, Finland
A. M. BAGGE
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014University of Jyväskylä, Finland
E. T. VALTONEN
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014University of Jyväskylä, Finland
*
*Corresponding author. Tel: +358 14 2602332. Fax: +358 14 2602321. E-mail: anssi.karvonen@bytl.jyu.fi

Summary

Monogenean communities of fish have generally been considered non-interactive as negative interspecific interactions have rarely been reported. Most of the earlier studies on monogenean communities, however, have been conducted not only in systems with relatively low parasite abundances but, more importantly, at study scales where microhabitat-level interactions between the parasites are easily overlooked. We examined the communities of 3 abundant Dactylogyrus (Monogenea) species on the gills of crucian carp (Carassius carassius) by analysing the interactions at the scale of individual gill filaments, where interactions between the species, if any, should most likely take place. Contrary to our expectations, we did not find evidence for competitive exclusion between the species, which suggests that monogenean communities are non-interactive even in high parasite abundances. At the species level, individual parasites were highly aggregated within the filaments, essentially showing a strong tendency to occur at either end of a filament. This, together with the result of differences in the distribution of juvenile parasites within the filaments compared to adults, suggests that these parasites are able to actively seek out their conspecifics in small-scale microhabitats during maturation, which again could enhance their mate-finding.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagge, A. M., Poulin, R. and Valtonen, E. T. (2004). Fish population size, and not density, as the determining factor of parasite infection: a case study. Parasitology 128, 305313. doi: 10.1017/S0031182003004566.CrossRefGoogle Scholar
Bagge, A. M., Sasal, P., Valtonen, E. T. and Karvonen, A. (2005). Infracommunity level aggregation in the monogenean communities of crucian carp (Carassius carassius). Parasitology 131, 367372. doi: 10.1017/S0031182005007626.CrossRefGoogle ScholarPubMed
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Fernando, C. H. and Hanek, C. (1976). Gills. In Ecological Aspects of Parasitology (ed. Kennedy, C. R.), pp. 210226. North-Holland Publishing Company, Amsterdam.Google Scholar
Geets, A., Coene, H. and Ollevier, F. (1997). Ectoparasites of the whitespotted rabbitfish, Siganus sutor (Valenciennes, 1835) of the Kenyan coast: distribution within the host population and site selection on the gills. Parasitology 115, 6979.CrossRefGoogle ScholarPubMed
Gusev, A. V. (1985). Keys to Parasites of Freshwater Fish of the USSR, Vol. 2, Parasitic Metazoa. Leningrad, Nauka. (In Russian.)Google Scholar
Hayward, G. J., Lakshmi, K. M. and Rohde, K. (1998). Assemblages of ectoparasites of a pelagic fish, slimy mackerel (Scomber australasicus), from south-eastern Australia. International Journal for Parasitology 28, 263273.CrossRefGoogle ScholarPubMed
Hedges, L. V. and Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press, London.Google Scholar
Karvonen, A., Bagge, A. M. and Valtonen, E. T. (2005). Parasite assemblages of crucian carp (Carassius carassius) – is depauperate composition explained by lack of parasite exchange, extreme environmental conditions or host unsuitability? Parasitology 131, 273278. doi: 10.1017/S0031182005007572.CrossRefGoogle ScholarPubMed
Kearn, G. C. (1968). The development of the adhesive organs of some diplectanid, tetraonchid and dactylogyrid gill parasites (Monogenea). Parasitology 58, 149163.CrossRefGoogle ScholarPubMed
Koskivaara, M., Valtonen, E. T. and Vuori, K.-M. (1992). Microhabitat distribution and coexistence of Dactylogyrus species (Monogenea) on the gills of roach. Parasitology 104, 273281.CrossRefGoogle Scholar
Morand, S., Poulin, R., Rohde, K. and Hayward, C. (1999). Aggregation and species coexistence of ectoparasites of marine fish. International Journal for Parasitology 29, 663672.CrossRefGoogle Scholar
Morand, S., Simková, A., Matejusova, I., Plaisance, L., Verneau, O. and Desdevises, Y. (2002). Investigating patterns may reveal processes: evolutionary ecology of ectoparasitic monogeneans. International Journal for Parasitology 32, 111119.CrossRefGoogle ScholarPubMed
Mouillot, D., Šimková, A., Morand, S. and Poulin, R. (2005). Parasite species coexistence and limiting similarity: a multiscale look at phylogenetic, functional and reproductive distances. Oecologia 146, 269278. doi: 10.1007/s00442-005-0194-1.CrossRefGoogle Scholar
Poulin, R. (2001). Interactions between species and the structure of helminth communities. Parasitology 122 (Suppl.), S3S11.CrossRefGoogle ScholarPubMed
Poulin, R. and Valtonen, E. T. (2002). The predictability of helminth community structure in space: a comparison of fish populations from adjacent lakes. International Journal for Parasitology 32, 12351243.CrossRefGoogle ScholarPubMed
Rohde, K. (1977). A non-competitive mechanism responsible for restricting niches. Zoologischer Anzeiger 199, 164172.Google Scholar
Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648671.CrossRefGoogle Scholar
Rohde, K. (1991). Intra- and interspecific interactions in low density populations in resource-rich habitats. Oikos 60, 91104.CrossRefGoogle Scholar
Rohde, K., Hayward, C., Heap, M. and Gosper, D. (1994). A tropical assemblage of ectoparasites: gill and head parasites of Lethrinus miniatus (Teleostei, Lethrinidae). International Journal for Parasitology 24, 10311053.CrossRefGoogle ScholarPubMed
Simková, A., Desdevises, Y., Gelnar, M. and Morand, S. (2000). Co-existence of nine gill ectoparasites (Dactylogyrus: Monogenea) parasitising the roach (Rutilus rutilus L.): history and present ecology. International Journal for Parasitology 30, 10771088.CrossRefGoogle ScholarPubMed
Simková, A., Gelnar, M. and Sasal, P. (2001). Aggregation of congeneric parasites (Monogenea: Dactylogyrus) among gill microhabitats within one host species (Rutilus rutilus L.). Parasitology 123, 599607.CrossRefGoogle ScholarPubMed
Vidal-Martínez, V. M. and Poulin, R. (2003). Spatial and temporal repeatability in parasite community structure of tropical fish hosts. Parasitology 127, 387398. doi: 10.1017/S0031182003003792.CrossRefGoogle ScholarPubMed